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Abstract

The natural partial ordering of the orbit types of the action of the group of local gauge transforma-
tions on the space of connections in space–time dimensiond ≤ 4 is investigated. For that purpose,
a description of orbit types in terms of cohomology elements of space–time, derived earlier, is used.
It is shown that on the level of these cohomology elements, the partial ordering relation is char-
acterized by a system of algebraic equations. Moreover, operations to generate direct successors
and direct predecessors are formulated. The latter allow to successively reconstruct the set of orbit
types, starting from the principal type. © 2002 Published by Elsevier Science B.V.
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1. Introduction

The study of geometrical and topological properties of classical non-Abelian gauge the-
ories turned out to be very important for our understanding of non-perturbative aspects
of the corresponding quantum field theories. The configuration space of the theory is the
gauge orbit space, which is obtained by factorizing the space of connections with respect
to the action of the group of local gauge transformations. This space has the structure of a
stratified set, because, usually, besides the principal orbit type also non-generic orbit types
occur. These may give rise to singularities of the configuration space.

First, the generic, or principal, stratum was investigated—leading to a deeper under-
standing of the Gribov-ambiguity [14] and of anomalies in terms of index theorems [2].
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In particular, one gets anomalies of purely topological type, which cannot be seen by per-
turbative quantum field theory [16]. Next, in a paper by Kondracki and Rogulski [11], a
systematic study of the structure of the full gauge orbit space was presented. In particular, it
was shown that the gauge orbit space is a stratified topological space in the ordinary sense,
cf. [10] and references therein.

There are partial results and conjectures concerning the physical relevance of non-generic
strata. First of all, non-generic gauge orbits affect the classical motion on the orbit space due
to boundary conditions and, in this way, may produce non-trivial contributions to the path
integral. They may also lead to localization of certain quantum states, as it was suggested
by finite-dimensional examples [6]. Further, the gauge field configurations belonging to
non-generic orbits can possess a magnetic charge, i.e. they can be considered as a kind
of magnetic monopole configurations, which seem to be related to the quark confinement
problem in Chern–Simons theory [1]. Finally, it was suggested in [8] that non-generic strata
may lead to additional anomalies.

Most of the problems mentioned here are still awaiting a systematic investigation. In
a series of papers, we are going to make a new step in this direction. In [13], we have
presented a complete solution to the problem of determining the strata that are present in the
gauge orbit space for SUn-gauge theories in compact Euclidean space–time of dimension
d = 2,3,4. The basic idea behind is the 1-1-correspondence between orbit types and
equivalence classes of the so-called holonomy-induced Howe subbundles of the principal
SUn-bundle, where the gauge connections of the theory under consideration live on. It
turns out that Howe subgroups of SUn as well as (holonomy-induced) Howe subbundles
can be classified, leading to a classification of orbit types in terms of certain algebraical and
topological data. As a first application, we have shown in [13] that—within the context of
Chern–Simons theory in 2+ 1 dimensions—the property of a configuration to be nodal in
the sense of Asorey, see [1], is a property of strata. For a given model of this type, the nodal
strata can be easily determined.

In [13], one basic problem was left open: the determination of the natural partial ordering
in the set of orbit types. In the present paper, we solve this problem. First, in Section 2, we
recall the classification of gauge orbit types from Rudolph et al. [13]. In Section 3, we prove
that the natural partial ordering is characterized by a system of algebraic equations relat-
ing the classifying data via a matrix with non-negative integer entries (inclusion matrix).
The inclusion matrix can be visualized by a Bratteli diagram, as explained in Section 4. In
Sections 5 and 6, direct successors and direct predecessors are characterized. In particular,
operations which generate the direct successors (splitting and merging) and the direct prede-
cessors (inverse splitting and inverse merging) are defined. Finally, an example is discussed:
for gauge group SU2 and some space–time manifolds the complete Hasse diagram of the
set of orbit types is derived.

2. Classification of gauge orbit types

Let P be a principal SUn-bundle over a compact, connected, orientable Riemannian
manifoldM of dimension dimM ≤ 4. LetAk andGk denote the sets of connection forms
and gauge transformations, respectively, of Sobolev classWk. Provided 2k > dimM, Ak
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is an affine Hilbert space andGk+1 is a Hilbert Lie group acting smoothly from the right
onAk [12,14]. If we view gauge transformations as equivariant mapsP → SUn then for
A ∈ Ak andg ∈ Gk+1, the action is given by

A(g) = Ad(g−1)A + g−1 dg.

LetMk denote the quotient topological spaceAk/Gk+1. This is the gauge orbit space,
i.e., the configuration space of our gauge theory. Let OT(Ak,Gk+1) denote the set of orbit
types of the action ofGk+1 onAk. Recall that orbit types are given by conjugacy classes
in Gk+1 of stabilizer, or isotropy, subgroups of connections. The set OT(Ak,Gk+1) carries
a natural partial ordering: letτ, τ ′ ∈ OT(Ak,Gk+1). Thenτ ≤ τ ′ iff there exist represen-
tativesS, S′ ⊆ Gk+1 of τ, τ ′, respectively, such thatS ⊇ S′. Note that this definition is
consistent with [3], but not with [11] and several other authors who define the partial order-
ing inversely. In [11], it was shown that the family{Mk

τ |τ ∈ OT(Ak,Gk+1)}, whereMk
τ

denotes the subset ofMk of orbits of typeτ , is a stratification ofMk into smooth Hilbert
manifolds. For the notion of stratification, see [10] or [11, Section 4.4]. Moreover, for any
τ ∈ OT(Ak,Gk+1),Mk

τ is open and dense in the union
⋃

τ ′≤τM
k
τ ′ . In this sense, the par-

tially ordered set OT(Ak,Gk+1) encodes the stratification structure of the gauge orbit space.
In [13], we have derived a description of the elements of OT(Ak,Gk+1) in terms of

certain cohomology elements ofM. In the present paper, we are going to discuss the partial
ordering. For the convenience of the reader, we begin with briefly recalling the basic results
of Rudolph et al. [13].

A Howe subgroupof a groupG is a subgroupH ⊆ G that is the centralizerH = CG(K)

of some subsetK ⊆ G. A Howe subbundleof a G-bundleP is a reduction ofP to a
Howe subgroup. A Howe subbundle is calledholonomy-inducediff it admits a connected
reductionQ̃ to a subgroupH̃ ⊆ G, such that

Q̃ · CG(CG(H̃ )) = Q.

Let Howe∗(P ) denote the set of isomorphism classes of holonomy-induced Howe sub-
bundles ofP factorized by the natural action of the structure groupG. Note that here an
isomorphism of principal bundles is assumed to commute with the structure group action
and to project to the identical mapping on the base space. The set Howe∗(P ) carries a
natural partial ordering defined by the relation of inclusion up to isomorphy and up to the
action ofG.

Proposition 2.1. Howe∗(P ) is isomorphic, as a partially ordered set, to OT(Ak,Gk+1).

Proof. See [13, Theorem 3.3]. �

We note that in the caseG = SUn, any Howe subbundle is holonomy-induced, see [13,
Theorem 6.2]. Hence, this condition is redundant here.

The following description of Howe∗(P ) has been derived in [13]. First, the Howe sub-
groups of SUn were determined. Let K(n) denote the set of pairs of sequences of strictly
positive integers

J = (k,m) = ((k1, . . . , kr ), (m1, . . . , mr)), r = 1, . . . , n,
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obeying
∑r

i=1 kimi = n. Let g denote the greatest common divisor of the members of
m and letm̃ = (m̃1, . . . , m̃r ) be defined bymi = gm̃i ∀i. We shall always viewk as an
(r × 1)-matrix (row vector) andm as a(1 × r)-matrix (column vector). This turns out to
be their natural character. AnyJ ∈ K(n) defines a decomposition

C
n = r⊕

i=1
C
ki ⊗ Cmi ,

and an embedding

Mk1(C) × · · · × Mkr (C) → Mn(C), (D1, . . . , Dr) �→ r⊕
i=1

Di ⊗ 1mi
. (1)

Here Ml (C) stands for the algebra of complex(l × l)-matrices. IdentifyingCki ⊗ Cmi ∼=
C
kimi , (c1, . . . , cki )⊗ (d1, . . . , dmi

) �→ (c1d1, . . . , cki d1, . . . , c1dmi
, . . . , cki dmi

), the ten-
sor productDi ⊗ 1mi

corresponds to the(mi × mi) block matrix
Di 0 · · · 0

0 Di · · · 0
...

...
. . .

...

0 0 · · · Di

 .

We denote the image of the embedding (1) by MJ (C) and its intersections with Un and
SUn by UJ and SUJ , respectively. Note that UJ is the image of the restriction of (1) to
Uk1 × · · · × Ukr . By construction, MJ (C) is a unital∗-subalgebra of Mn(C).

Proposition 2.2. Up to conjugacy, the Howe subgroups ofSUn are given bySUJ , J ∈
K(n).

Proof. See [13, Lemma 4.1]. �

In order to classify principal SUJ -bundles overM, the homotopy classes of maps from
M to the classifying space BSUJ have to be determined. Through building the Postnikov
tower of BSUJ up to the 5th stage the following was shown.

Proposition 2.3. Let M be a manifold, dimM ≤ 4 and let Q,Q′ be principalSUJ -bundles
over M. Assume that for any characteristic classα defined by an element ofH 1(BSUJ,Zg),
H 2(BSUJ,Z), or H 4(BSUJ,Z) there holdsα(Q) = α(Q′). Then Q andQ′ are isomor-
phic.

Proof. See [13, Corollary 5.5]. �
A generating set for the characteristic classes mentioned in the proposition can be con-

structed as follows. Consider the natural homomorphisms

jJ : SUJ → UJ (embedding),

prMJ,i : MJ (C) → Mki (C) (projection onto theith factor),

prUJ,i : UJ → Uki (projection onto theith factor).
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For any positive integerl, letγUl = 1+γ
(2)
Ul +· · ·+γ

(2l)
Ul denote the sum of generators of the

cohomology algebraH ∗(BUl,Z). We assume that the generators are chosen in such a way
that for the canonical blockwise embeddingjl : Ul → U(l + 1) there holds(Bjl)∗γU(l+1) =
γUl ∀l. (Recall that Bjl : BUl → BU(l + 1) is the map between classifying spaces
associated tojl .) Then, in particular, the characteristic classes defined by the generators
γ
(2k)
Ul are thekth Chern classes. The cohomology elements

(BjJ )
∗(BprUJ,i)

∗γUki , i = 1, . . . , r,

of H ∗(BSUJ,Z) define characteristic classes

αJ,i : Bun(M,SUJ ) → H ∗(M,Z), Q �→ (fQ)
∗((BjJ )∗(BprUJ,i)

∗γUki ), (2)

wherei = 1, . . . , r. HerefQ : M → BSUJ is the classifying map ofQ and Bun(M,SUJ )
stands for the set of isomorphism classes of principal SUJ -bundles overM. We denote
αJ (Q) = (αJ,1(Q), . . . , αJ,r (Q)).

Next, for any positive integerl, let jl : Zl → U1 denote the canonical embedding and
let pl denote the endomorphismz �→ zl of U1. We define a homomorphism

λU
J : UJ → U1, D �→

r∏
i=1

pm̃i
◦ detUki ◦ prUJ,i(D). (3)

One can check that the diagram

(4)

commutes. Moreover, we notice that the image of SUJ underλU
J is the subgroupjg(Zg) of

U1. Thus,λU
J induces a homomorphismλS

J : SUJ → Zg by requiring the diagram

(5)

to commute. (In fact, one can show thatλS
J projects to an isomorphism of the group of

connected components of SUJ ontoZg.)
One can show that the Bockstein homomorphismβg : H 1(BZg,Zg) → H 2(BZg,Z),

induced by the short exact sequence 0→ Z→ Z→ Zg → 0, is an isomorphism, see the
proof of Lemma 5.9 in [13]. Thus, we can consider the cohomology element

(BλS
J )

∗β−1
g (Bjg)

∗γ (2)
U1

of H 1(BSUJ,Zg). It defines a characteristic class

ξJ : Bun(M,SUJ ) → H ∗(M,Zg), Q �→ (fQ)
∗((BλS

J )
∗β−1

g (Bjg)
∗γ (2)

U1 ). (6)
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By construction, the characteristic classesαJ andξJ are subject to a relation. To formulate it,
let us introduce the following notation. Letr ′, r be positive integers. For any∆ ∈ Mr ′,r (N)
(set of(r ′ × r)-matrices with non-negative integer entries), we define a map

E∆ :
r∏

i=1

H even
0 (·,Z) →

r ′∏
i′=1

H even
0 (·,Z),

(α1, . . . , αr) �→ (α
∆11
1 ( · · · ( α∆1r

r , . . . , α
∆r′1
1 ( · · · ( α

∆r′r
r ). (7)

Here powers are taken w.r.t. the cup product andH even
0 (·,Z)denotes the subset ofH even(·,Z)

of elements of the formα = 1 + α(2) + α(4) + · · · . Note thatH even
0 is a semigroup w.r.t.

the cup product. LetE(2j)
∆,i′ (α) denote the component of degree 2j of the i′th member of

E∆(α).

Proposition 2.4. The characteristic classesαJ , ξJ are subject to the relation

E
(2)
m̃ (αJ (Q)) = βg(ξJ (Q)) ∀Q ∈ Bun(M,SUJ ). (8)

Recall thatm̃ is viewed as a(1 × r)-matrix.

Proof. See [13, Theorem 5.13]. �

We introduce the notation

H(J)(·,Z) =
r∏

i=1

{αi ∈ H even
0 (·,Z)|α(2j)i = 0 for j > ki}. (9)

Consider the following two equations in the variablesα ∈ H(J)(M,Z), ξ ∈ H 1(M,Zg):

E
(2)
m̃ (α) = βg(ξ), (10)

Em(α) = c(P ). (11)

Herec(P ) denotes the total Chern class ofP .

Proposition 2.5. If dimM ≤ 4, the characteristic classesαJ andξJ define a bijection from
Bun(M,SUJ ) onto the set of solutions of Eq.(10). By restriction, they define a bijection
from the subset ofBun(M,SUJ ) of reductions of P onto the set of solutions of Eqs.(10)
and(11).

Proof. See [13, Theorems 5.14 and 5.17]. �

Note that the content of Eq. (11) in degree 2 is a consequence of Eq. (10).
Let K(P ) denote the disjoint union of the solution sets of Eqs. (10) and (11) over all

J ∈ K(n). We write the elements of K(P ) as triples(J ;α, ξ), whereJ ∈ K(n) and(α, ξ)
is a solution of the corresponding equations. According to Proposition 2.5, the set K(P )

classifies the Howe subbundles ofP up to isomorphy.
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Finally, the action of the structure group SUn on Howe subbundles ofP was factored
out by passing to the set̂K(P ) that is obtained from K(P ) by identifying (J ;α, ξ) with
(σJ ; σα, ξ) for all permutationsσ of 1, . . . , r. HereσJ stands for

σJ = (σk, σm). (12)

Theorem 2.6. The collection of characteristic classes{αJ , ξJ |J ∈ K(n)}, defines, by
passing to quotients, a bijection fromHowe∗(P ) ontoK̂(P ).

Proof. See [13, Theorem 7.2]. �

In the sequel, it is convenient to work with the inverse of this bijection. To construct it, for
anyL ∈ K(P ), L = (J ;α, ξ), let QL denote the isomorphism class of SUJ -subbundles
of P defined by

αJ (QL) = α, (13)

ξJ (QL) = ξ. (14)

Then the pre-image of the element ofK̂(P ) represented byL is given by the conjugacy
class ofQL under SUn-action. The (isomorphy classes of) subbundlesQL may be viewed
as some kind of standard representatives of the elements of Howe∗(P ).

To conclude this section, for later use, let us collect some formulae involving the function
E∆. For anyi′, one has

E
(2)
∆,i′(α) =

r∑
i=1

∆i′iα
(2)
i , (15)

E
(4)
∆,i′(α)=

r∑
i=1

∆i′iα
(4)
i +

r∑
i=1

∆i′i (∆i′i − 1)

2
α
(2)
i ( α

(2)
i

+
∑

1≤i<j≤r

∆i′i∆i′jα
(2)
i ( α

(2)
j , (16)

see [13, Lemma 5.11]. In particular, for any non-negative integerl,

E
(2)
l∆,i′(α) = lE(2)

∆,i′(α) ∀i′. (17)

Taking into account that the cup product is commutative in even degree, one can also check
that for any∆ ∈ Mr ′,r (N) and∆′ ∈ Mr ′′,r ′(N) there holds

E∆′∆ = E∆′ ◦ E∆. (18)

3. Characterization of the partial ordering

In this section, we are going to determine the natural partial ordering of Howe∗(P ) on
the level of the classifying set̂K(P ).
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Let L = (J ;α, ξ), L′ = (J ′;α′, ξ ′) be elements of K(P ). Let [QL] and [Q′
L] denote

the conjugacy classes ofQL andQ′
L, respectively, under the action of SUn. The natural

partial ordering on the set Howe∗(P ) is defined as follows:

[QL] ≤ [QL′ ] ⇔ ∃D ∈ SUn such thatQL · D ⊆ QL′ . (19)

Here inclusion is understood up to isomorphy. We aim to express the relation (19) in terms
of L andL′.

LetD ∈ SUn, such thatD−1SUJD ⊆ SUJ ′. Then there also holdsD−1UJD ⊆ UJ ′ and
D−1MJ (C)D ⊆ MJ ′(C). We have an associated homomorphism

hM
D : MJ (C) → MJ ′(C), C �→ D−1CD,

and, derived from that, homomorphismshU
D : UJ → UJ ′ andhS

D : SUJ → SUJ ′. Due
to MJ (C) and MJ ′(C) being finite-dimensional unitalC∗-algebras, the embeddinghM

D is
characterized by an(r ′ × r)-matrix∆(D) ∈ Mr ′,r (N) (non-negative integer entries), called
inclusion matrix. The matrix∆(D) can be constructed as follows: for 1≤ i ≤ r and
1 ≤ i′ ≤ r ′, consider the homomorphism

Mki (C) → MJ (C)
hM
D→ MJ ′(C)

prM
J ′,i′→ Mk′

i′
(C), (20)

where the first map is canonical embedding to theith factor of MJ (C). Define∆(D)i′i to be
the number of fundamental irreps contained in the representation of Mki (C) defined by (20).

Lemma 3.1. LetJ, J ′ ∈ K(n). LetD ∈ SUn such thatD−1SUJD ⊆ SUJ ′. Then

∆(D)k = k′, (21)

m = m′∆(D). (22)

Conversely, let ∆ ∈ Mr ′,r (N) be a solution of(21) and (22). Then there existsD ∈ SUn
such thatD−1SUJD ⊆ SUJ ′ and∆(D) = ∆.

Proof. First, letD be given as proposed. Consider the representations

Mki (C) → MJ (C) → Mn(C), (23)

Mki (C) → MJ (C)
hM
D→ MJ ′(C) → Mn(C). (24)

The numbers of fundamental irreps contained in (23) and (24) aremi and
∑r ′

i′=1m
′
i′∆(D)i′i ,

respectively. Since (23) and (24) are isomorphic—a bijective intertwiner being given byD—
we obtain (22). Moreover, inserting this equation intom·k = m′·k′ yieldsm′·(k′−∆k) = 0.
By construction, the members of the sequencek′−∆k are non-negative. Since the members
of m are strictly positive, Eq. (21) follows.

Conversely, let∆ be a solution of (21) and (22). Consider the decompositions

C
n = ⊕r

i=1C
ki ⊗ Cmi , (25)

C
n = ⊕r ′

i′=1C
k′
i′ ⊗ Cm′

i′ (26)
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defined byJ andJ ′, respectively. Due to (22) and (21), (25) and (26) admit subdecompo-
sitions

C
n = ⊕r

i=1C
ki ⊗

(
⊕r ′
i′=1C

∆i′i ⊗ Cm′
i′
)
, (27)

C
n = ⊕r ′

i′=1

(
⊕r
i=1C

ki ⊗ C∆i′i
)

⊗ Cm′
i′ , (28)

respectively. There existsD ∈ SUn transforming (28) into (27) by a suitable permutation

of the subspacesCki ⊗ C∆i′i ⊗ Cm′
i′ . One can check thatD−1MJ (C)D leaves the decom-

position (26) invariant. It followsD−1MJ (C)D ⊆ MJ ′(C), henceD−1SUJD ⊆ SUJ ′.
Moreover, from (27) and (28), one can read off that∆(D) = ∆. �

We remark that for general inclusions of Mk1(C) ⊕ · · · ⊕ Mkr (C) ⊆ Mk′
1
(C) ⊕ · · · ⊕

Mk′
r′
(C), inclusion matrices only have to obey

∑r
i=1∆i′iki ≤ k′

i′ , where the inclusion is

unital iff there holds equality for alli′.
Let us denote the set of solutions of the system of equations (21) and (22) by N(J, J ′).

We note that if N(J, J ′) �= ∅, then (22) implies thatg′ dividesg. Hence, reduction-gg′ :
Zg → Z

′
g modg′ is defined and is a ring homomorphism.

Again, letD ∈ SUn, such thatD−1SUJD ⊆ SUJ ′. LetQ
[hS

D ]
L = QL ×SUJ SUJ ′ denote

the SUJ ′-subbundle ofP associated toQL by virtue of the homomorphismhS
D : SUJ →

SUJ ′.

Lemma 3.2. The characteristic classes ofQ
[hS

D ]
L are

αJ ′(Q
[hS

D ]
L ) = E∆(D)(α), (29)

ξJ ′(Q
[hS

D ]
L ) = -gg′(ξ), (30)

Proof. The classifying map ofQ
[hS

D ]
L is

f
Q

[hS
D

]
L

= BhS
D ◦ fQL

. (31)

Hence, according to (2)

αJ ′,i′(Q
[hS

D ]
L )= (f

Q
[hS
D

]
L

)∗((Bjj ′)∗(BprUJ ′,i′)
∗γUk′

i′
)

= (fQL
)∗(BhS

D)
∗((Bjj ′)∗(BprUJ ′,i′)

∗γUk′
i′
)

= (fQL
)∗(BjJ )∗(BhU

D)
∗(BprUJ ′,i′)

∗γUk′
i′
. (32)

In order to calculate(BhU
D)

∗(BprU
J ′,i′)

∗γUk′
i′
, consider the homomorphisms

prMJ ′,i′ ◦ hM
D : MJ (C) → Mk′

i′
(C), (33)

prUJ ′,i′ ◦ hU
D : UJ → Uk′

i′
. (34)
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Since the image of (33) is a unital∗-subalgebra of Mk′
i′
(C), the image of (34) is a Howe

subgroup of Uk′
i′ . Hence, the latter is conjugate to UJ (i′) for someJ (i′) ∈ K(k′

i′). One can

check thatJ (i′) is obtained from the pair of sequences((k1, . . . , kr ), (∆i′1, . . . , ∆i′r )) by
deleting all pairs of entrieski , ∆i′i for which∆i′i = 0. On the other hand, UJ (i′) is the
image of the homomorphism

ϕi′ : UJ
dr→

r∏
i=1

UJ

∏r
i=1 prUJ,i→

r∏
i=1

Uki

∏r
i=1 d∆(D)

i′i→
r∏

i=1

∆(D)i′i∏
j=1

Uki

 ιi′→Uk′
i′ . (35)

Heredl denotes diagonal embedding into thel-fold product, where forl = 0 this product
is assumed to reduce to{1}, andιi′ is a standard blockwise embedding. Having conjugate
images, the homomorphisms (34) and (35) are conjugate themselves [7], i.e., there exists
an inner automorphismψi′ of Uk′

i′ such that the following diagram commutes:

(36)

Since Uk′
i′ is connected, Bψi′ is null-homotopic. Thus, on the level of cohomology

(BhU
D)

∗(BprUJ ′,i′)
∗γUk′

i′
= (Bϕi′)

∗γUk′
i′
. (37)

From the decomposition (35), one derives

(Bϕi′)
∗γUk′

i′
= ((BprUJ,1)

∗γUk1)
∆(D)i′1 ( · · · ( ((BprUJ,r )

∗γUkr )
∆(D)i′r , (38)

see the proof of Lemma 5.12 in [13] for details. We remark that (38) is an analog of the
Whitney sum formula. Using (7), from (37) and (38) we deduce

(BhU
D)

∗(BprUJ ′,i′)
∗γUk′

i′
= E∆(D),i′((BprUJ,1)

∗γUk1, . . . , (BprUJ,r )
∗γUkr ). (39)

Inserting (39) into (32) and using (2) and (13), we find

αJ ′,i′(Q
[hS

D ]
L )= (fQL

)∗(BjJ )∗E∆(D),i′((BprUJ,1)
∗γUk1, . . . , (BprUJ,r )

∗γUkr )

= (fQL
)∗E∆(D),i′((BjJ )

∗(BprUJ,1)
∗γUk1, . . . , (BjJ )

∗(BprUJ,r )
∗γUkr )

=E∆(D),i′(αJ (QL)) = E∆(D),i′(α).

This proves (29). Now consider (30), using (6) and (31), we compute

βg′(ξJ ′(Q
[hS

D ]
L ))= βg′(f

Q
[hS
D

]
L

)∗((BλS
J ′)∗β−1

g′ (Bjg′)∗γ (2)
U1 )

= (f
Q

[hS
D

]
L

)∗(BλS
J ′)∗(Bjg′)∗γ (2)

U1

= (fQL
)∗(BhS

D)
∗(BλS

J ′)∗(Bjg′)∗γ (2)
U1 . (40)
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Let l be such thatg = lg′. The following relation will be proved afterwards:

jg′ ◦ λS
J ′ ◦ hS

D = pl ◦ jg ◦ λS
J . (41)

Inserting (41) into (40) yields

βg′(ξJ ′(Q
[hS

D ]
L )) = (fQL

)∗(BλS
J )

∗(Bjg)∗(Bpl)∗γ (2)
U1 . (42)

It is easily seen that(pl)∗ : π1(U1) → π1(U1) is multiplication byl. Therefore,

(Bpl)
∗γ (2)

U1 = lγ
(2)
U1 . (43)

Then (42) becomes

βg′(ξJ ′(Q
[hS

D ]
L ))= l(fQL

)∗(BλS
J )

∗(Bjg)∗γ (2)
U1 = lβg(fQL

)∗((BλS
J )

∗β−1
g (Bjg)

∗γ (2)
U1 )

= lβg(ξJ (QL)) = lβg(ξ), (44)

where for the last two equalities, we have used (6) and (14), respectively. As a direct
consequence of the definition of the Bockstein homomorphism, one has

lβg = βg′-gg′ . (45)

Thus, (44) yields

βg′(ξJ ′(Q
[hS

D ]
L )) = βg′-gg′(ξ). (46)

Consider the following portion of the long exact sequence of coefficient homomorphisms
which is induced by the short exact sequence 0→ Z→ Z→ Zg′ → 0, see [5, Chapter IV
and Section 5]:

· · · → H 1(BSUJ,Z) → H 1(BSUJ,Zg′)
βg′→H 2(BSUJ,Z) → · · · .

SinceH 1(BSUJ,Z) = 0, see [13, Corollary 5.8],βg′ is injective here. Hence (46) implies
(30). It remains to prove the relation (41). According to (3) and (5), for any B∈ SUJ

jg′ ◦ λS
J ′ ◦ hS

D(B)= λU
J ′ ◦ jJ ◦ hS

D(B) = λU
J ′ ◦ hU

D ◦ jJ (B)

=
r ′∏

i′=1

pm̃′
i′

◦ detUk′
i′

◦ prUJ ′,i′ ◦ hU
D ◦ jJ (B). (47)

Using (36) to replace prU
J ′,i′ ◦ hU

D and taking into account that an inner automorphism does
not change the determinant, (47) yields

jg′ ◦ λS
J ′ ◦ hS

D(B) =
r ′∏

i′=1

pm̃′
i′

◦ detUk′
i′

◦ ϕi′ ◦ jJ (B). (48)

By construction ofϕi′ , see (35), for anyC ∈ UJ ,

detUk′
i′

◦ ϕi′(C) =
r∏

i=1

p∆(D)i′i ◦ detUki ◦ prUJ,i(C).
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Thus, (48) becomes

jg′ ◦ λS
J ′ ◦ hS

D(B)=
r ′∏

i′=1

r∏
i=1

pm̃′
i′

◦ p∆(D)i′i ◦ detUki ◦ prUJ,i ◦ jJ (B)

=
r∏

i=1

p
(
∑r′

i′=1 m̃
′
i′∆(D)i′i )

◦ detUki ◦ prUJ,i ◦ jJ (B). (49)

Due to (22),g′∑r ′
i′=1 m̃

′
i′∆(D)i′i = ∑r ′

i′=1m
′
i′∆(D)i′i = mi = gm̃i , hence

r ′∑
i′=1

m̃′
i′∆(D)i′i = lm̃i , i = 1, . . . , r. (50)

Consequently, (49) implies

jg′ ◦ λS
J ′ ◦ hS

D(B)=
r∏

i=1

plm̃i
◦ detUki ◦ prUJ,i ◦ jJ (B)

= pl

(
r∏

i=1

pm̃i
◦ detUki ◦ prUJ,i ◦ jJ (B)

)
= pl ◦ λU

J ◦ jJ (B) = pl ◦ jg ◦ λS
J (B),

where the last two equalities are due to (3) and (5), respectively. This proves (41) and,
therefore, concludes the proof of the lemma. �

Lemma 3.3. LetD ∈ SUn, such thatD−1SUJD ⊆ SUJ ′. ThenQL · D is a reduction of

Q
[hS

D ]
L to the structure groupD−1SUJD.

Proof. Define a mapϕ : QL ·D → Q
[hS

D ]
L , q ·D �→ [(q, 1)]. This map is obviously smooth.

To check equivariance, letC ∈ SUJ , then

ϕ((q · D) · D−1CD)= ϕ((q · C) · D) = [(q · C, 1)] = [(q, hS
D(C))]

= [(q, 1)] · hS
D(C) = [(q, 1)] · D−1CD.

This proves the lemma. �

Theorem 3.4. Let L = (J ;α, ξ), L′ = (J ′;α′, ξ ′) be elements ofK(P ). Then[QL] ≤
[QL′ ] if and only if

(a) g′ divides g and there holdsξ ′ = -gg′(ξ),
(b) there exists∆ ∈ Mr ′,r (N) such that

∆k = k′, (51)

m = m′∆, (52)

E∆(α) = α′. (53)
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Proof. To begin with, assume [QL] ≤ [QL′ ]. Then there existsD ∈ SUnsuch thatQL·D ⊆
QL′ . SinceQL ·D has structure groupD−1SUJD,D−1SUJD ⊆ SUJ ′. As a consequence,
the homomorphismhS

D and the inclusion matrix∆(D) exist. Due to Lemma 3.1,∆(D) ∈
N(J, J ′), hence it obeys (51) and (52). The latter equation implies, in particular, thatg′
dividesg. Moreover, by construction,QL′ can be reduced toQL ·D. According to Lemma

3.3, so can the SUJ ′-bundleQ
[hS

D ]
L . SinceQL′ andQ

[hS
D ]

L have the same structure group, it

followsQL′ ∼= Q
[hS

D ]
L . Then Lemma 3.2 yields

α′ = αJ ′(QL′) = αJ ′(Q
[hS

D ]
L ) = E∆(D)(α).

Thus,∆(D) satisfies (53). By an analogous argument, we finally findξ ′ = -gg′(ξ).
Conversely, assume that assertions (a) and (b) hold. Then, due to Lemma 3.1, there exists

D ∈ SUn such thatD−1SUJD ⊆ SUJ ′ and∆(D) = ∆. Consider the SUJ ′-bundleQ
[hS

D ]
L

associated toQL. Due to Lemma 3.2 and (53)

αJ ′(Q
[hS

D ]
L ) = E∆(α) = α′ = αJ ′(QL′).

Analogously, we obtainξJ ′(Q
[hS

D ]
L ) = ξJ ′(QL′). Hence,QL′ andQ

[hS
D ]

L are isomorphic.
Then Lemma 3.3 impliesQL · D ⊆ QL′ , up to isomorphy (which is sufficient). It follows
[QL] ≤ [QL′ ]. �

Let L,L′ ∈ K(P ). If condition (a) of Theorem 3.4 holds, we define N(L,L′) to be the
set of solutions of the system of equations (51)–(53). If this condition does not hold, we
define N(L,L′) = ∅. In order to be able to argue entirely on the level ofK̂(P ), we define
a partial ordering on̂K(P ) as the image of the natural partial ordering of Howe∗(P ) under
the bijection defined by the collection of characteristic classesαJ , ξJ , J ∈ K(n). According
to Theorem 3.4, the partial ordering so defined can be characterized as follows.

Corollary 3.5. Letκ, κ ′ ∈ K̂(P ), then the following assertions are equivalent:

(a) κ ≤ κ ′;
(b) there exist representativesL,L′ of κ, κ ′, respectively, such thatN(L,L′) is non-empty;
(c) for any two representativesL,L′ of κ, κ ′, respectively, N(L,L′) is non-empty.

Proof.

(a)⇒ (c): LetL, L′ be given. By assumption, [QL] ≤ [QL′ ], then Theorem 3.4 implies
that N(L,L′) is non-empty.

(c)⇒ (b): Obvious.
(b)⇒ (a): LetL,L′ be the representatives provided by assertion (b). Since N(L,L′) is

non-empty, assertions (a) and (b) of Theorem 3.4 hold. It follows that the sub-
bundlesQL andQL′ obey [QL] ≤ [QL′ ], hence,κ ≤ κ ′. �

Example. Let P = M × SU4. Consider elementsL = (J ;α, ξ), L′ = (J ′;α′, ξ ′) of
K(P ), whereJ = ((1,1), (2,2)) andJ ′ = ((2,2), (1,1)). We remark that the subgroup
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SUJ ⊆ SU4 has connected components{(
z12 0

0 z−112

)∣∣∣∣∣ z ∈ U1

}
,

{(
z12 0

0 −z−112

)∣∣∣∣∣ z ∈ U1

}
,

hence is isomorphic to the direct productZ2×U1. The subgroup SUJ ′ can be parameterized
as follows:

SUJ ′ =
{(

zA 0

0 z−1B

)∣∣∣∣∣ z ∈ U1, A, B ∈ SU2

}
.

Thus, it is isomorphic to the direct product U1× SU2× SU2.
In order to find out whether [QL] ≤ [QL′ ], we are going to determine N(L,L′). Condition

(a) of Theorem 3.4 is obviously satisfied. Thus, we can proceed as follows: first, we solve
Eqs. (51) and (52), i.e., we derive N(J, J ′). Then, for all∆ ∈ N(J, J ′), we computeE∆(α)

and compare the result withα′. Eqs. (51) and (52) read(
∆11 ∆12

∆21 ∆22

)(
1

1

)
=
(

2

2

)
, ( 1 1)

(
∆11 ∆12

∆21 ∆22

)
= ( 2 2).

We extract the equations

∆11 + ∆12 = 2, ∆21 + ∆22 = 2, ∆11 + ∆21 = 2, ∆12 + ∆22 = 2.

The solutions are

∆a =
(

1 1

1 1

)
, ∆b =

(
2 0

0 2

)
, ∆c =

(
0 2

2 0

)
. (54)

Forα = (α1, α2), they yield

E∆a(α)= (α1 ( α2, α1,( α2), E∆b(α) = (α1 ( α1, α2,( α2),

E∆c(α)= (α2 ( α2, α1,( α1).

Thus, N(L,L′) �= ∅, i.e., [QL] ≤ [QL′ ], if and only ifα′ coincides with one of the elements
E∆a(α), E∆b(α), orE∆c(α) listed above.

4. Bratteli diagrams

Any∆ ∈ Mr ′,r (N) can be visualized by a diagram consisting of a series of upper vertices,
labeled byi = 1, . . . , r, and a series of lower vertices, labeled byi′ = 1, . . . , r ′. For each
combination ofi andi′, the corresponding vertices are connected by∆i′i edges. For example,
the matrices∆a , ∆b and∆c in (54) give rise to the following diagrams:
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The diagrams associated in this way to the elements of N(J, J ′), whereJ, J ′ ∈ K(n) are
special cases of the so-calledBratteli diagrams[4]. The latter have, in general, several
stages picturing the subsequent inclusion matrices associated to an ascending sequence of
finite-dimensional von Neumann algebrasA1 ⊆ A2 ⊆ A3 ⊆ · · · . For this reason, we refer
to the diagram associated to∆ ∈ N(J, J ′) as the Bratteli diagram of∆. We remark that
due to Eq. (51),∆ cannot have a zero row. Due to (52), it cannot have a zero column either.
Accordingly, each vertex of the Bratteli diagram of∆ is cut by at least one edge.

Let L = (J ;α, ξ) andL′ = (J ′;α′ξ ′) be elements of K(P ). In terms of the Bratteli
diagram of the variable∆, Eqs. (51)–(53) can be rewritten as follows:

k′
i′ =

r∑
i=1

∑
edges fromi to i′

ki, i′ = 1, . . . , r ′, (55)

mi =
r ′∑

i′=1

∑
edges fromi to i′

m′
i′ , i = 1, . . . , r, (56)

α′
i′ = r

(
i=1

(
edges fromi to i′

αi, i′ = 1, . . . , r ′. (57)

The main use of Bratteli diagrams is to simplify calculations as, for instance, solving the
equations determining N(L,L′). Furthermore, some of the arguments in the sequel are
easier to formulate on the level of these diagrams than on the level of the corresponding
matrices.

5. Direct successors

In this section, we are going to derive a characterization of direct successor relations in
K̂(P ) and to formulate operations that generate the direct successors of any given element
of K̂(P ).

5.1. The level of an inclusion matrix

Let J, J ′ ∈ K(n). For any∆ ∈ N(J, J ′), we define the level of∆ to be the integer

7(∆) = 2
r∑

i=1

r ′∑
i′=1

∆i′i − (r + r ′). (58)
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Using the quantities

7+
i (∆) =

 r ′∑
i′=1

∆i′i

− 1, i = 1, . . . , r, (59)

7−
i′ (∆) =

(
r∑

i=1

∆i′i

)
− 1, i′ = 1, . . . , r ′, (60)

we can write

7(∆) =
r∑

i=1

7+
i (∆) +

r ′∑
i′=1

7−
i′ (∆). (61)

Due to (51) and (52), each row and each column of∆ contain at least one non-zero entry.
It follows that7+

i (∆), 7
−
i′ (∆) ≥ 0. Hence, due to (61),7(∆) ≥ 0.

As for the interpretation,7(∆) measures, in a sense, how muchJ ′ deviates fromJ (up to
permutations). On the level of the Bratteli diagram of∆, 7(∆) is twice the number of edges
minus the number of vertices, whereas7+

i (∆) and7−
i′ (∆) count the edges at the verticesi

andi′, respectively, minus the obligatory one edge per vertex.
For later use, we note the following formulae, which follow immediately from (61)

7(∆) = 2
r∑

i=1

7+
i (∆) + r − r ′ = 2

r ′∑
i′=1

7−
i′ (∆) + r ′ − r. (62)

5.2. Lemmata about the level

Lemma 5.1. LetL,L′, L′′ ∈ K(P ) and let∆ ∈ N(L,L′), ∆′ ∈ N(L′, L′′). Then∆′∆ ∈
N(L,L′′) and

7(∆′∆) ≥ 7(∆′) + 7(∆). (63)

Moreover, 7(∆′) = 0 or 7(∆) = 0 imply equality in(63).

Proof. LetL = (J ;α, ξ),L′ = (J ′;α′, ξ ′) andL′′ = (J ′′;α′′, ξ ′′). By the assumption that
N(L,L′) and N(L′, L′′) be non-empty,g′ dividesg andg′′ dividesg′, henceg′′ dividesg.
Also by this assumption,ξ ′ = -gg′(ξ)andξ ′′ = -g′g′′(ξ ′), hence-gg′′(ξ) = -g′g′′ ◦-gg′(ξ) =
-g′g′′(ξ ′) = ξ ′′. Moreover, one can check that∆′∆ obeys Eqs. (51)–(53), where for the last
one, (18) has to be used.

To prove (63), using (58)–(60), we compute

2
r ′∑

i′=1

7+
i′ (∆

′)7−
i′ (∆) = 2

∑
i′=1

 r ′′∑
i′′=1

∆′
i′′i′

− 1

(( r∑
i=1

∆i′i

)
− 1

)

= 2

 r ′′∑
i′′=1

r ′∑
i′=1

r∑
i=1

∆′
i′′i′∆i′i −

r ′∑
i′=1

r∑
i=1

∆i′i −
r ′′∑

i′′=1

r ′∑
i′=1

∆′
i′′i′ + r ′


= 7(∆′∆) − 7(∆) − 7(∆′). (64)
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Since the l.h.s. of (64) is non-negative, this yields (63). Moreover, if7(∆) = 0 or7(∆′) = 0,
then due to (61),7−

i′ (∆) = 0 or7+
i′ (∆

′) = 0, respectively, for alli′. Hence, the l.h.s. of (64)
vanishes, so that equality holds in (63). �

Lemma 5.2. LetL,L′ ∈ K(P ) and letl = 0 or 1. If N(L,L′) contains an element of level
l then all its elements have level l.

Proof. LetL = (J ;α, ξ), L′ = (J ′;α′, ξ ′) and let∆ ∈ N(L,L′). Due to (51) and (59)

r∑
i=1

ki7
+
i (∆) =

r∑
i=1

ki

 r ′∑
i′=1

∆i′i

− 1

 =
r ′∑

i′=1

k′
i′ −

r∑
i=1

ki . (65)

Sinceki > 0 and7+
i (∆) ≥ 0 for all i, (65) implies

7+
i (∆) = 0 ∀i ⇔

r ′∑
i′=1

k′
i′ −

r∑
i=1

ki = 0. (66)

By a similar argument, we find

7−
i′ (∆) ∀i = 0 ⇔

r∑
i=1

mi −
r ′∑

i′=1

m′
i′ = 0. (67)

Now assume that7(∆) = l, wherel = 0 or 1. Then at most one of the integers7+
i (∆) or

7−
i′ (∆) can be non-zero. Thus, (66) or (67) holds. In either case, the assertion holds for any
∆′ ∈ N(L,L′). Then (62) implies7(∆′) = 7(∆) = l. �

Remarks.

(1) The proof of Lemma 5.2 shows that the lemma still holds if one replaces N(L,L′) by
N(J, J ′), for anyJ, J ′ ∈ K(n).

(2) In general, the level function7may not be constant on the sets N(L,L′). For example, let
P be the trivial SU8-bundle overM and letL = (J ;α, ξ),L′ = (J ′;α′, ξ ′) be given by
J = ((1,2), (4,2)), α = 1,ξ = 0 andJ ′ = ((4,2), (1,2)), α′ = 1,ξ ′ = 0. Obviously,
(α, ξ) ∈ K(P )J and (α′, ξ ′) ∈ K(P )J ′ . One can check that N(L,L′) contains the
following two inclusion matrices:

∆ =
(

4 0

0 1

)
, ∆′ =

(
0 2

2 0

)
.

One has7(∆) = 6 and7(∆′) = 4.

Lemma 5.3. LetL,L′ ∈ K(P ). The following assertions are equivalent:

(a) L andL′ are equivalent.
(b) N(L,L′) contains an element of level0.
(c) N(L,L′) is non-empty and all of its elements have level0.
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Proof. Due to Lemma 5.2, (b)⇔ (c). Hence, it suffices to prove (a)⇔ (b). Let L =
(J ;α, ξ),L′ = (J ′;α′, ξ ′). First, assume that there exist∆ ∈ N(L,L′) such that7(∆) = 0.
Then7+

i (∆) = 0 for all i and7−
i′ for all i′. That means, each row and each column contains

exactly one non-zero entry and this entry has value 1. It follows that∆ is square, i.e.,r ′ = r,
and that there exists a permutationσ of 1, . . . , r such that

∆i′i = δσ(i′)i , i′, i = 1, . . . , r. (68)

As an immediate consequence

∆k = σk, m′∆ = σ−1m′, E∆(α) = σα. (69)

Since∆ ∈ N(L,L′), (69) impliesJ ′ = σJ , α′ = σα, andξ ′ = -gg′(ξ). In particular,
m′ = σm, henceg = g′. It follows ξ ′ = ξ , thus,L andL′ are equivalent.

Conversely, assume thatξ ′ = ξ and that there exist a permutationσ of 1, . . . , r such
that J ′ = σJ andα′ = σα. Since, in particular,m′ = σm, g′ andg coincide. Thus,
trivially, g′ dividesg andξ ′ = -gg′(ξ). Hence, if we find a solution∆ of Eqs. (51)–(53)
then∆ ∈ N(L,L′). Due to (69), such a solution is given by the matrix (68). By construction,
it has level 0. �

5.3. Splitting and merging

LetL = (J ;α, ξ) ∈ K(P ). In this section, we are going to formulate operations that cre-
ate new elements of K(P ) out ofL. These operations will be used to prove a decomposition
lemma in Section 5.4 and, later on, to generate direct successors.

5.3.1. Splitting
Choose 1≤ i0 ≤ r such thatmi0 �= 1. Choose a decompositionmi0 = mi0,1 + mi0,2

with strictly positive integersmi0,1, mi0,2. Define sequences of length(r + 1)

k◦ = (k1, . . . , ki0−1, ki0, ki0, ki0+1, . . . , kr ), (70)

m◦ = (m1, . . . , mi0−1,mi0,1,mi0,2,mi0+1, . . . , mr). (71)

α◦ = (α1, . . . , αi0−1, αi0, αi0, αi0+1, . . . , αr). (72)

Since the greatest common divisorg◦ of m◦ dividesg, we can furthermore define

ξ◦ = -gg◦(ϕ). (73)

DenoteJ ◦ = (k◦,m◦) andL◦ = (J ◦;α◦, ξ◦).
We claim thatL◦ ∈ K(P ). It is easily seen thatm◦ · k◦ = n andα ∈ H(J ◦)(M,Z).

Consequently, it suffices to check thatα◦ andξ◦ obey Eqs. (10) and (11). First, consider
(10). Let the integerl be such thatg = lg◦. Using (45) and (17) as well as taking into
account that (10) holds forα andξ , we compute

βg◦(ξ◦) = βg◦ ◦ -gg◦(ξ) = lβg(ξ) = lE(2)
m̃ (α) = E

(2)
lm̃ (α).



124 G. Rudolph et al. / Journal of Geometry and Physics 42 (2002) 106–138

Expanding the r.h.s. according to (15) yields

βg◦(ξ◦)= l
m1

g
α
(2)
1 + · · · + l

mi0

g
α
(2)
i0

+ · · · + l
mr

g
α(2)r

= m1

g◦ α
(2)
1 + · · · + mi0

g◦ α
(2)
i0

+ · · · + mr

g◦ α
(2)
r

= m1

g◦ α
(2)
1 + · · · + mi0,1

g◦ α
(2)
i0

+ mi0,2

g◦ α
(2)
i0

+ · · · + mr

g◦ α
(2)
r = Em̃◦(α◦),

where the penultimate equality is due to the fact thatg◦ divides bothmi0,1 andmi0,2. Now
consider (11). Using commutativity of the cup product in even degree, one can check that
Em◦(α◦) = Em(α). Since (11) holds forα, it holds forα◦. This provesL◦ ∈ K(P ). We
say thatL◦ arises fromL by a splitting of thei0th member.

5.3.2. Merging
Choose 1≤ i1 ≤ i2 ≤ r such thatmi1 = mi2. Define sequences of length(r − 1)

k◦ = (k1, . . . , ki1−1, ki1 + ki2, ki1+1, . . . , k̂i2, . . . , kr ), (74)

m◦ = (m1, . . . , mi1−1,mi1,mi1+1, . . . , m̂i2, . . . , mr), (75)

α◦ = (α1, . . . , αi1−1, αi1 ( αi2, αi1+1, . . . , α̂i2, . . . , αr), (76)

where (̂) indicates that the entry is omitted, as well as

ξ◦ = ξ. (77)

DenoteJ ◦ = (k◦,m◦) andL◦ = (J ◦;α◦, ξ◦).
Let us showL◦ ∈ K(P ). As in the case of splitting, one can immediately verify that

m◦ ·k◦ = n, α◦ ∈ H(J ◦)(M,Z), andEm◦(α◦) = Em(α). It follows thatα◦ obeys Eq. (11).
Due tog◦ = g, a similar calculation showsEm̃◦(α◦) = Em̃(α). Since alsoβg◦(ξ◦) =

βg(ξ), we obtainβg◦(ξ◦) = E
(2)
m̃◦(α◦). Thus,L◦ ∈ K(P ).

We say thatL◦ arises fromL by merging thei1th and thei2th member.

Remark. It may happen that for certain elements of K(P ) no splittings or no mergings can
be applied. Amongst these elements are, for example, those withm1 = · · · = mr = 1 (no
splitting) and those having pairwise distinctmi (no merging).

Lemma 5.4. Let L,L◦ ∈ K(P ).L◦ can be obtained from L by a splitting of thei0th member
if and only ifN(L,L◦) contains an element with Bratteli diagram

(78)
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L◦ can be obtained from L by merging thei1th and thei2th member if and only ifN(L,L◦)
contains an element with Bratteli diagram

(79)

Proof. AssumeL = (J ;α, ξ),L◦ = (J ◦;α◦, ξ◦). Since the proofs for the cases of splitting
and merging are completely analogous, we only give the first one. First, assume thatL◦
arises fromL by a splitting of thei0th member. Then, by construction,g◦ dividesg and
ξ◦ = -gg◦(ξ). Hence the matrix given by the Bratteli diagram (78) belongs to N(L,L◦)
iff it satisfies Eqs. (51)–(53). By the help of Eqs. (55)–(57), this can be easily checked on
diagram level. Conversely, assume that N(L,L◦) contains an element with Bratteli diagram
(78). Then, in particular, condition (a) of Theorem 3.4 holds, i.e.,g◦ dividesg andξ◦ =
-gg◦(ξ). An inspection of (55)–(57) shows thatk◦

i0
= k◦

i0+1 = ki0, m◦
i0

+ m◦
i0+1 = mi0,

andα◦
i0

= α◦
i0+1 = αi0, whereask◦

i = ki, m
◦
i = mi, α

◦
i = αi for 1 ≤ i < i0 and

k◦
i+1 = ki, m

◦
i+1 = mi, α

◦
i+1 = αi for i0 < i ≤ r. Thus,L◦ is obtained fromL by a

splitting of thei0th member according to the decompositionmi0 = m◦
i0

+ m◦
i0+1. �

5.4. The decomposition lemma

Lemma 5.5. Let L,L′ ∈ K(P ) and let∆ ∈ N(L,L′). If 7(∆) �= 0 then there exist
L◦ ∈ K(P ) and∆◦ ∈ N(L,L◦), ∆◦′ ∈ N(L◦, L′) such that∆ = ∆◦′∆◦ and7(∆◦) = 1.

Proof. To begin with, assume that there existi0 such that7+
i0
(∆) > 0. Choosei′0 such that

∆i′0i0 �= 0. We have the following estimate:

mi0 − m′
i′0

=
r ′∑

i′=1

m′
i′(∆i′i0 − δi′i′0) ≥

r ′∑
i′=1

(∆i′i0 − δi′i′0) = 7+
i0
(∆) > 0.

This shows thatmi0 = (mi0 −m′
i′0
)+m′

i′0
is a decomposition into strictly positive integers.

We defineL◦ to be the element of K(P ) obtained fromL by the corresponding splitting
operation. Furthermore, we define∆◦ to be the((r + 1) × r)-matrix

(80)
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and∆◦′ to be the(r ′ × (r + 1))-matrix

(81)

We notice that∆◦ has Bratteli diagram (78). Hence, due to Lemma 5.4,∆◦ ∈ N(L,L◦).
From the diagram, we read off that7(∆◦) = 1. Moreover, by means of a direct computation
using (80) and (81), one can check that∆◦′∆◦ = ∆. Thus, it remains to prove that∆◦′ ∈
N(L◦, L′). This amounts to the following items:

(a) g′ dividesg◦: We recall from (71) that

m◦ = (m1, . . . , mi0−1,mi0 − m′
i′0
,m′

i′0
,mi0+1, . . . , mr). (82)

By assumption,g′ dividesg, hence all themi . By definition, it also dividesm′
i′0

.

(b) -g◦g′(ξ◦) = ξ ′: According to (73),-g◦g′(ξ◦) = -g◦g′ ◦ -gg◦(ξ) = -gg′(ξ) = ξ ′. Here
the last equality holds by assumption.

(c) ∆◦′k◦ = k′: Using that∆◦ ∈ N(L,L◦) and∆ ∈ N(L,L′), we compute∆◦′k◦ =
∆◦′∆◦k = ∆k = k′.

(d) m′∆◦′ = m◦: This has to be checked by a direct computation using (81) and (82).
(e) E∆◦′(α◦) = α′: Using the same arguments as for (c), as well as (18), we obtain

E∆◦′(α◦) = E∆◦′ ◦ E∆◦(α) = E∆◦′∆◦(α) = E∆(α) = α′.

This proves∆◦′ ∈ N(L◦, L′).
Now assume that7+

i (∆) = 0 for all i. Then in each column of∆ there exists exactly one
non-zero entry, and this entry has value 1. On the other hand, since7(∆) �= 0, there exists
i′0 such that7−

i′0
(∆) > 0. This means, the row labeled byi′0 has at least two entries of value

1. Therefore, we find two columns, labeled byi1 < i2 such that

∆i′ik =
{

1, i′ = i′0, k = 1,2,

0 otherwise, k = 1,2.
(83)

Thenmik = ∑r ′
i′=1∆i′ikm

′
i′ = m′

i′0
, k = 1,2, hencemi1 = mi2. Thus, we can define

L◦ to be the element of K(P ) obtained by merging thei1th and thei2th member ofL.
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Moreover, we define∆◦ to be the((r − 1) × r)-matrix

and∆◦′ to be the(r ′ × (r − 1))-matrix

∆◦ now having Bratteli diagram (79),∆◦ ∈ N(L,L◦) by Lemma 5.4. Analogous to the
first case, one can check that7(∆) = 1, ∆◦′∆◦ = ∆, and∆◦′ ∈ N(L◦, L′). This proves
the lemma. �

5.5. Characterization of direct successors

Theorem 5.6. Letκ, κ ′ ∈ K̂(P ). The following assertions are equivalent:

(a) κ ′ is a direct successor ofκ.
(b) There exist representatives L andL′ ofκ andκ ′, respectively, such thatN(L,L′)contains

an element of level1.
(c) For any representativesL,L′ of κ andκ ′, respectively, N(L,L′) is non-empty and its

elements have level1.
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Proof.

(a)⇒ (c): Let L andL′ be representatives ofκ andκ ′, respectively. Sinceκ ≤ κ ′ due
to Corollary 3.5, there exists∆ ∈ N(L,L′). Sinceκ �= κ ′ due to Lemma 5.3,
7(∆) �= 0. Then Lemma 5.5 implies that there existL◦ ∈ K(P ) and∆◦ ∈
N(L,L◦), ∆◦′ ∈ N(L◦, L′) such that∆ = ∆◦′∆◦ and 7(∆◦) = 1. Let κ◦
denote the equivalence class ofL◦. We haveκ ≤ κ◦ ≤ κ ′. According to Lemma
5.3,κ �= κ◦. It follows thatκ◦ = κ ′. Hence, again due to Lemma 5.3,7(∆◦′) = 0.
Then the sharpened version of (63) implies7(∆) = 7(∆◦) = 1.

(c)⇒ (b): Obvious.
(b)⇒ (a): LetL,L′ ∈ K(P ) be given as assumed. Letκ◦ ∈ K̂(P ) such thatκ ≤ κ◦ ≤ κ ′.

For any representativeL◦ of κ◦, there exist∆◦ ∈ N(L,L◦)and∆◦′ ∈ N(L◦, L′).
Due to Lemma 5.1,∆◦′∆◦ ∈ N(L,L′). Since, by assumption, this set contains
an element of level 1, Lemma 5.2 yields7(∆◦′∆◦) = 1. Then (63) requires that
either7(∆◦) = 0 or 7(∆◦′) = 0. According to Lemma 5.3, in the first case,
κ = κ◦, whereas in the second case,κ◦ = κ ′. This shows thatκ ′ is a direct
successor ofκ. �

The Bratteli diagram of an inclusion matrix of level1: LetL,L′ ∈ K(P ) and let∆ ∈
N(L,L′). Assume that7(∆) = 1. Then either there existsi0 such that7+

i0
(∆) = 1 and

7+
i (∆) = 0 for all i �= i0 and7−

i′ (∆) = 0 for all i′, or there existsi′0 such that7−
i′0
(∆) = 1

and7−
i′ (∆) = 0 for all i′ �= i′0 and7+

i (∆) = 0 for all i. Accordingly, the Bratteli diagram
of ∆ is given by

(84)

for some 1≤ i1 < i2 ≤ r + 1, or by

(85)
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for some 1≤ i1 < i2 ≤ r, respectively. In particular, in the first case,r ′ = r + 1 and in the
second case,r ′ = r − 1.

5.6. Generation of direct successors

Theorem 5.7. Letκ ∈ K̂(P ) and let L be a representative ofκ. Then the direct successors
of κ are obtained by applying all possible splittings and mergings to L and passing to
equivalence classes.

Proof. As an immediate consequence of Lemma 5.4 and Theorem 5.6, any element of
K̂(P ) generated in the way proposed is a direct successor ofκ. Conversely, letκ ′ be a
direct successor ofκ. Choose a representativeL′ of κ ′. Due to Theorem 5.6, N(L,L′)
contains an element of level 1. As noted above, the Bratteli diagram of such an ele-
ment is of the form (84) or (85). By a permutation of the lower vertices we can turn
this diagram into (78) or (79), respectively. This corresponds to the passage fromL′ to
another representativeL◦ of κ ′. It is immediately seen that the matrix given by the dia-
gram with permuted lower vertices belongs to N(L,L◦). Then Lemma 5.4 implies that
L◦ can be obtained fromL by a splitting or a merging, respectively. This proves the
theorem. �

5.7. Example

Let P be a principal SU4-bundle. LetL ∈ K(P ), L = (J ;α, ξ), whereJ = (k,m) =
((1,1), (2,2)). Thenα has componentsαi = 1 + α

(2)
i , i = 1,2. (One may wish to recall

from the example of Section 3 that SUJ has isomorphism typeZ2 × U1.) We are going to
determine the direct successors of the equivalence class ofL.

Let us begin with splitting operations. Fori0 = 1, the only possible splitting is given
by the decompositionm1 = 2 = 1 + 1. It yields L◦

a = (J ◦
a;α◦

a, ξ
◦
a), whereJ ◦

a =
((1,1,1), (1,1,2)), α◦

a = (α1, α1, α2), andξ◦
a = 0. The passage fromL to L◦

a can be
represented conveniently in a Bratteli diagram whose vertices are labeled by the respective
quantitieski,mi andαi (rather than by the mere numberi):
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For i0 = 2, a similar splitting operation createsL◦
b, given by the labeled Bratteli dia-

gram

As for merging operations, the only choice fori1, i2 is i1 = 1, i2 = 2. This yieldsL◦
c :

Next, we have to pass to equivalence classes. Generically,L◦
a, L

◦
b, andL◦

c generate their own
classes. However, whileL◦

c can never be equivalent toL◦
a orL◦

b, the latter are equivalent iff
α1 = α2. In order to see for which bundlesP this can happen, consider Eqs. (10) and (11).
The first one requiresα(2)1 = α

(2)
2 to be a torsion element. Then, due toα(4)1 = α

(4)
2 = 0,

the second one impliesc2(P ) = 0. Thus,L◦
a andL◦

b can be (occasionally) equivalent only
if P is trivial.

6. Direct predecessors

In this section, we formulate operations to generate the direct predecessors of any given
element ofK̂(P ). Direct predecessors are, for our purposes, more interesting than direct
successors for at least two reasons. First, they allow one to reconstruct the setK̂(P ) to-
gether with its partial ordering from the unique maximal element (which, in terms of Howe
subbundles, is given byP itself). Second, on the level of the stratification of the gauge orbit
space, predecessors correspond to strata of higher symmetry.
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In the preceding section, we have been able to create all direct successors of a given
element ofK̂(P ) from one and the same representative. This was achieved by using the
freedom in the choice of the representatives of the direct successors. Since here we wish
to proceed likewise, we have to carry this freedom from the level of successors to that of
predecessors. For this reason, the inverted operations are not just splitting and merging read
backwards. They rather take the following form. LetL ∈ K(P ), L = (J ;α, ξ).

6.1. Inverse splitting

Choose 1≤ i1 < i2 ≤ r such thatki1 = ki2 andαi1 = αi2. Define sequences of length
(r − 1)

k◦ = (k1, . . . , ki1−1, ki1, ki1+1, . . . , k̂i2, . . . , kr ),

m◦ = (m1, . . . , mi1−1,mi1 + mi2,mi1+1, . . . , m̂i2, . . . , mr),

α◦ = (α1, . . . , αi1−1, αi1, αi1+1, . . . , α̂i2, . . . , αr).

We note thatg divides the greatest common divisorg◦ of m◦, so that-g◦g is well defined.
Chooseξ◦ ∈ H 1(M,Zg◦) such thatξ = -g◦g(ξ◦) and

βg◦(ξ◦) = E
(2)
m̃◦(α

◦). (86)

DenoteJ ◦ = (k◦,m◦) andL◦ = (J ◦;α◦, ξ◦). We check thatL◦ ∈ K(P ): by construction,
m◦ ·k◦ = n andα◦ ∈ H(J ◦)(M,Z). Due to (86),α◦ andξ◦ obey Eq. (10). Usingαi1 = αi2,
one can check thatEm◦(α◦) = Em(α). Hence, sinceα obeys Eq. (11), so doesα◦. This
provesL◦ ∈ K(P ).

We say thatL◦ arises fromL by an inverse splitting of thei1th and thei2th member.

6.2. Inverse merging

Choose 1≤ i0 ≤ r such thatki0 �= 1. Choose a decompositionki0 = ki0,1 + ki0,2 with
strictly positive integerski0,1, ki0,2. Choose cohomology elementsαi0,1, αi0,2 ∈ H even

0 (M,Z)

such thatα(2j)i0,l
= 0 for j > ki0,l , l = 1,2, and

αi0,1 ( αi0,2 = αi0. (87)

Define sequences of length(r + 1)

k◦ = (k1, . . . , ki0−1, ki0,1, ki0,2, ki0+1, . . . , kr ),

m◦ = (m1, . . . , mi0−1,mi0,mi0,mi0+1, . . . , mr),

α◦ = (α1, . . . , αi0−1, αi0,1, αi0,2, αi0+1, . . . , αr),

as well as

ξ◦ = ξ.

DenoteJ ◦ = (k◦,m◦) andL◦ = (J ◦;α◦, ξ◦). To see thatL◦ ∈ K(P ), we checkm◦ ·
k◦ = n andα◦ ∈ H(J ◦)(M,Z). Using (87), one can verify thatEm◦(α◦) = Em(α).
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Consequently,α◦ obeys Eq. (11). A similar calculation, using, in addition,g◦ = g, shows
thatEm̃◦(α◦) = Em̃(α). Since alsoβg◦(ξ◦) = βg(ξ), α

◦ andξ◦ obey Eq. (10).
We say thatL◦ arises fromL by an inverse merging of thei0th member.

Remark. Like for the operations of splitting and merging, for some of the elements of
K(P ), inverse splitting or inverse merging may not be applicable. In particular, it may
happen that there does not exist a solutionξ◦ of Eq. (86).

Lemma 6.1. LetL,L◦ ∈ K(P ). L◦ arises from L by an inverse splitting of thei1th and
thei2th member if and only ifN(L,L◦) contains an element with Bratteli diagram

(88)

L◦ arises from L by an inverse merging of thei0th member if and only ifN(L,L◦) contains
an element with Bratteli diagram

(89)

Proof. The proof is completely analogous to that of Lemma 5.4 and shall be omitted.�
Theorem 6.2. Letκ ∈ K̂(P ) and let L be a representative ofκ. Then the direct predecessors
of κ are obtained by applying all possible inverse splittings and inverse mergings to L and
passing to equivalence classes.

Proof. The proof is completely analogous to that of Theorem 5.7. The only difference is
that here we are allowed to pass to another representative of thepredecessor, i.e., to permute
theuppervertices in the diagrams (84) and (85), thus arriving at (88) and (89). �

Example. As in Section 5.7, letP be a principal SU4-bundle and letL ∈ K(P ), L =
(J ;α, ξ), whereJ = ((1,1), (2,2)). We are going to determine the direct predecessors of
the equivalence class ofL. Inverse splittings can be applied only ifα1 = α2. In this case,
for any solutionξ◦ ∈ H 1(M,Z4) of the system of equations

ξ◦ mod 2= ξ, (90)

β4(ξ
◦) = α

(2)
1 , (91)
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we obtain an elementL◦ = (J ◦;α◦, ξ◦), whereJ ◦ = ((1), (4)) andα◦ = α1 = α2. The
passage fromL toL◦ can be summarized in the labeled Bratteli diagram

that has to be read upwards. EachL◦ generates its own equivalence class. Due tok1 =
k2 = 1, inverse mergings cannot be applied toL. Thus, in the caseα1 = α2, the direct
predecessors of the equivalence class ofL are labeled by the solution of Eqs. (90) and (91),
whereas in the caseα1 �= α2 direct predecessors do not exist. Recall from Section 5.7 that
the first case can only occur ifP is trivial.

As another example, consider an elementL′ of K(P ), L′ = (J ′;α′, ξ ′), whereJ ′ =
((2), (2)). Inverse mergings can be applied and yield elementsL′◦ as follows:

Hereα′
i
◦ = 1+ (α′

i
◦)(2), i = 1,2 such thatα′

1
◦ ( α′

2
◦ = α′. When passing to equivalence

classes, elementsL′◦ with α′◦ = (α′
1
◦, α′

2
◦) andα′◦ = (α′

2
◦, α′

1
◦) have to be identified.

SinceL′ does not allow inverse splittings, there are no more direct predecessors.

7. Example: gauge orbit types for SU2

The gauge orbit types for SU2, i.e., the setK̂(P ) for a principal SU2-bundleP overM,
was calculated in [13] by solving Eqs. (10) and (11) for allJ . Here, we are going to recover
this result using a different technique that will also yield the partial ordering of orbit types.
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A partially ordered set can be reconstructed either: (a) from its minimal elements by
successively determining direct successors, or (b) from its maximal elements by succes-
sively determining direct predecessors. In the case ofK̂(P ), there exists a unique maximal
element, namely the class corresponding to the bundleP itself. Minimal elements are, in
general, not unique. In fact, their number can be infinite. Thus, the preferred algorithm
is (b).

The unique representative of the maximal element of K(P ) isLmax = (Jmax;αmax, ξmax),
whereJmax = ((2), (1)), αmax = c(P ), andξmax = 0. Inverse mergings yield elements
L◦:

whereα◦
i = 1+ (α◦

i )
(2) such thatα◦

1 ( α◦
2 = c(P ). Sorting by degree yields the equations

(α◦
1)
(2) + (α◦

2)
(2) = 0 and(α◦

1)
(2) ( (α◦

2)
(2) = c2(P ). We parameterize

(α◦
1)
(2) = α(2), (α◦

2)
(2) = −α(2),

whereα(2) ∈ H 2(M,Z) has to obey

−α(2) ( α(2) = c2(P ). (92)

The passage to equivalence classes leads to an identification of solutionsα(2) and−α(2).
We note that the Howe subgroup labeled byJ = ((1,1), (1,1)) is the toral subgroup
U1 of SU2 and that the parameterα(2) is just the first Chern class of the corresponding
reduction ofP . By virtue of this transliteration, Eq. (92) coincides with the result given
in [9].

Next, consider the direct predecessors of the classes generated byL◦. Inverse mergings
cannot be applied. Inverse splittings can be applied providedα◦

1 = α◦
2, i.e.,α(2) = −α(2).

Then for any solutionξ◦◦ ∈ H 1(M,Z2) of the equation

β2(ξ
◦◦) = α(2), (93)



G. Rudolph et al. / Journal of Geometry and Physics 42 (2002) 106–138 135

we obtain an elementL◦◦:

Each of these elements generates its own equivalence class.
Note that the Howe subgroup labeled byJ = ((1), (2)) is the centerZ2 of SU2 and that

ξ◦◦ is the natural characteristic class for principalZ2-bundles overM, see [15, Section 13].
Now let us draw Hasse diagrams ofK̂(P ) for specific space–time manifoldsM. In

the following, vertices stand for the elements ofK̂(P ) and edges indicate the relation
‘left vertex ≤ right vertex’. When viewing the elements ofK̂(P ) as Howe subbundles, the
vertex on the r.h.s. represents the class corresponding toP itself, the vertices in the middle
and on the l.h.s. represent reductions ofP to the Howe subgroups U1 andZ2, respectively.
When viewing the elements of̂K(P ) as orbit types, or strata of the gauge orbit space, the
vertex on the r.h.s. represents the generic stratum, whereas the vertices in the middle and on
the l.h.s. represent U1-strata and SU2-strata. Here the names U1-stratum and SU2-stratum
mean that the stratum consists of (orbits of) connections whose stabilizers are isomorphic
to U1 or SU2, respectively.
M = S4: SinceH 2(M,Z) = 0, Eq. (92) can be solved iffc2(P ) = 0, i.e., iff P is

trivial. The solution isα(2) = 0. Then Eq. (93) is trivially satisfied byξ◦◦ = 0. Due to
H 1(M,Z2) = 0, there are no more solutions. Thus, in the casec2(P ) = 0, the Hasse
diagram ofK̂(P ) is

If c2(P ) �= 0, on the other hand,̂K(P ) is trivial, meaning that it consists only of the class
corresponding toP itself.

On the level of gauge orbit types, the result means that in the sector of vanishing topo-
logical charge the gauge orbit space decomposes into the generic stratum, an U1-stratum,
and an SU2-stratum. If, on the other hand, a topological charge is present, only the generic
stratum survives.
M = S2 × S2: To perform the first step in the reconstruction procedure, let 1S2 and

γ
(2)
S2 be generators ofH 0(S2,Z) andH 2(S2,Z), respectively. Due to the Künneth theorem,

H 2(M,Z) is generated byγ (2)
S2 × 1S2 and 1S2 × γ

(2)
S2 , whereasH 4(M,Z) is generated by

γ
(2)
S2 × γ

(2)
S2 . Here× denotes the cohomology cross-product. Writing

α(2) = aγ
(2)
S2 × 1S2 + b1S2 × γ

(2)
S2 (94)
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with a, b ∈ Z, Eq. (92) becomes

−2abγ (2)
S2 × γ

(2)
S2 = c2(P ). (95)

If c2(P ) = 0, there are two series of solutions:a = 0 andb ∈ Z as well asa ∈ Z and
b = 0. Due toH 1(M,Z2) = 0, Eq. (93) tells us that out of the elements just obtained only
that labeled bya = b = 0 has a direct predecessor. Thus, in the casec2(P ) = 0, the Hasse
diagram ofK̂(P ) is

The vertices in the middle are labeled by the corresponding values of(a, b). Note that
passage to equivalence classes requires identification of solutions(a, b) and(−a,−b). If
c2(P ) = 2lγ (2)

S2 × γ
(2)
S2 , l �= 0, then the solutions of (95) area = q andb = −l/q, where

q runs through the (positive and negative) divisors ofl. For none of these solutions, (93) is
solvable. Hence, here the Hasse diagram is

where due to the identification(a, b) ∼ (−a,−b), q runs through the positive divisors of
l only. If c2(P ) = (2l + 1)γ (2)

S2 × γ
(2)
S2 , (95) has no solutions, so thatK̂(P ) is trivial.

Finally, the interpretation of the result in terms of strata of the gauge orbit space is similar
to that for space–time manifoldM = S4 above.
M = L3

2p × S1: Recall thatH 1(L3
2p,Z) = 0 andH 2(L3

2p,Z)
∼= Z2p. Let γ (2)

L,Z be a

generator ofH 2(L3
2p,Z) and let 1S1,Z be the generator ofH 0(S1,Z). Due to the Künneth

theorem,H 2(M,Z) is generated byγ (2)
L,Z × 1S1,Z. We write

α(2) = aγ
(2)
L,Z × 1S1,Z. (96)

Due to 2pγ (2)
L,Z = 0, α(2) ( α(2) = 0. Hence, Eq. (92) is solvable iffc2(P ) = 0, in which

case the solutions are given bya ∈ Z2p. Since when passing to equivalence classes, we have
to identifyα(2) and−α(2), i.e.,a and−a, the direct predecessors are labeled by elements
of Zp.
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Next, consider the second step of the reconstruction procedure. Let 1L,Z2, γ
(1)
L,Z2

, andγ (1)
S1,Z

be generators ofH 0(L3
2p,Z2), H

1(L3
2p,Z2), andH 1(S1,Z), respectively. Then, again due

to the Künneth theorem,H 1(M,Z2) is generated byγ (1)
L,Z2

× 1S1,Z and 1L,Z2 × γ
(1)
S1,Z

.
Moreover, one can check that

β2(γ
(1)
L,Z2

× 1S1,Z) = pγ
(2)
L,Z, β2(1L,Z2 × γ

(1)
S1,Z

) = 0. (97)

Decomposingξ◦◦ = aLγ
(1)
L,Z2

× 1S1,Z + aS1L,Z2 × γ
(1)
S1,Z

and using (96) and (97), (93)
becomes

paL = a.

Thus, only the elements labeled bya = 0 anda = p have direct predecessors. These are
given by the valuesaL = 0, aS = 0,1 andaL = 1, aS = 0,1, respectively.

As a result, in the casec2(P ) = 0, the Hasse diagram ofK̂(P ) is

Here the vertices on the l.h.s. are labeled by(aL , aS), whereas those in the middle are labeled
by a. In the casec2(P ) �= 0, K̂(P ) is trivial. Again, the interpretation in terms of strata of
the gauge orbit space goes along the lines of the caseM = S4 above.

To conclude, let us remark that, while for SU2 the picture is relatively simple, already
for SU3 the partial ordering becomes rather involved, and the Hasse diagrams representing
it are very complex.
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