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Abstract

The natural partial ordering of the orbit types of the action of the group of local gauge transforma-
tions on the space of connections in space—time dimemsior is investigated. For that purpose,
a description of orbit types in terms of cohomology elements of space—time, derived earlier, is used.
It is shown that on the level of these cohomology elements, the partial ordering relation is char-
acterized by a system of algebraic equations. Moreover, operations to generate direct successors
and direct predecessors are formulated. The latter allow to successively reconstruct the set of orbit
types, starting from the principal type. © 2002 Published by Elsevier Science B.V.
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1. Introduction

The study of geometrical and topological properties of classical non-Abelian gauge the-
ories turned out to be very important for our understanding of non-perturbative aspects
of the corresponding quantum field theories. The configuration space of the theory is the
gauge orbit space, which is obtained by factorizing the space of connections with respect
to the action of the group of local gauge transformations. This space has the structure of a
stratified set, because, usually, besides the principal orbit type also non-generic orbit types
occur. These may give rise to singularities of the configuration space.

First, the generic, or principal, stratum was investigated—leading to a deeper under-
standing of the Gribov-ambiguity [14] and of anomalies in terms of index theorems [2].
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In particular, one gets anomalies of purely topological type, which cannot be seen by per-
turbative quantum field theory [16]. Next, in a paper by Kondracki and Rogulski [11], a
systematic study of the structure of the full gauge orbit space was presented. In particular, it
was shown that the gauge orbit space is a stratified topological space in the ordinary sense,
cf. [10] and references therein.

There are partial results and conjectures concerning the physical relevance of non-generic
strata. First of all, non-generic gauge orbits affect the classical motion on the orbit space due
to boundary conditions and, in this way, may produce non-trivial contributions to the path
integral. They may also lead to localization of certain quantum states, as it was suggested
by finite-dimensional examples [6]. Further, the gauge field configurations belonging to
non-generic orbits can possess a magnetic charge, i.e. they can be considered as a kind
of magnetic monopole configurations, which seem to be related to the quark confinement
problem in Chern—Simons theory [1]. Finally, it was suggested in [8] that non-generic strata
may lead to additional anomalies.

Most of the problems mentioned here are still awaiting a systematic investigation. In
a series of papers, we are going to make a new step in this direction. In [13], we have
presented a complete solution to the problem of determining the strata that are presentin the
gauge orbit space for Sldgauge theories in compact Euclidean space—time of dimension
d = 2,3,4. The basic idea behind is the 1-1-correspondence between orbit types and
equivalence classes of the so-called holonomy-induced Howe subbundles of the principal
SUr-bundle, where the gauge connections of the theory under consideration live on. It
turns out that Howe subgroups of 8@ds well as (holonomy-induced) Howe subbundles
can be classified, leading to a classification of orbit types in terms of certain algebraical and
topological data. As a first application, we have shown in [13] that—within the context of
Chern-Simons theory in-2 1 dimensions—the property of a configuration to be nodal in
the sense of Asorey, see [1], is a property of strata. For a given model of this type, the nodal
strata can be easily determined.

In[13], one basic problem was left open: the determination of the natural partial ordering
in the set of orbit types. In the present paper, we solve this problem. First, in Section 2, we
recall the classification of gauge orbit types from Rudolph et al. [13]. In Section 3, we prove
that the natural partial ordering is characterized by a system of algebraic equations relat-
ing the classifying data via a matrix with non-negative integer entries (inclusion matrix).
The inclusion matrix can be visualized by a Bratteli diagram, as explained in Section 4. In
Sections 5 and 6, direct successors and direct predecessors are characterized. In particular,
operations which generate the direct successors (splitting and merging) and the direct prede-
cessors (inverse splitting and inverse merging) are defined. Finally, an example is discussed:
for gauge group SU2 and some space—time manifolds the complete Hasse diagram of the
set of orhit types is derived.

2. Classification of gauge orbit types

Let P be a principal SW-bundle over a compact, connected, orientable Riemannian
manifold M of dimension dimV/ < 4. Let A* andG¥ denote the sets of connection forms
and gauge transformations, respectively, of Sobolev dlédssProvided 2 > dim M, A
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is an affine Hilbert space argf+?! is a Hilbert Lie group acting smoothly from the right
on A¥ [12,14]. If we view gauge transformations as equivariant maps SUn then for
A € A¥ andg € G¥*1, the action is given by

A® = Ad(g™HA + g1 dg.

Let M* denote the quotient topological spadé/G*+1. This is the gauge orbit space,
i.e., the configuration space of our gauge theory. Let@TG**1) denote the set of orbit
types of the action of*** on A¥. Recall that orbit types are given by conjugacy classes
in Gk+1 of stabilizer, or isotropy, subgroups of connections. The setAdTg 1) carries
a natural partial ordering: let, t’ € OT(AX, Gk*1). Thent < 7’ iff there exist represen-
tativesS, S’ € GKt1 of 1, v/, respectively, such that D §’. Note that this definition is
consistent with [3], but not with [11] and several other authors who define the partial order-
ing inversely. In [11], it was shown that the famifyvtX|t € OT(A¥, G¥+1)}, where M¥
denotes the subset @f* of orbits of typer, is a stratification of\¥ into smooth Hilbert
manifolds. For the notion of stratification, see [10] or [11, Section 4.4]. Moreover, for any
T € OT(AX, G&+1), ME is open and dense in the unibih,, _, M¥,. In this sense, the par-
tially ordered set OTA*, G¥*+1) encodes the stratification structure of the gauge orbit space.

In [13], we have derived a description of the elements of ZTG*+1) in terms of
certain cohomology elements &f. In the present paper, we are going to discuss the partial
ordering. For the convenience of the reader, we begin with briefly recalling the basic results
of Rudolph et al. [13].

A Howe subgroupf a groupG is a subgrougd C G thatis the centralizel = C(K)
of some subseK C G. A Howe subbundl®f a G-bundle P is a reduction ofP to a
Howe subgroup. A Howe subbundle is callealonomy-inducedf it admits a connected
reductionQ to a subgroud C G, such that

0-Cg(Cg(H)) = Q.

Let Howe,(P) denote the set of isomorphism classes of holonomy-induced Howe sub-
bundles ofP factorized by the natural action of the structure graupNote that here an
isomorphism of principal bundles is assumed to commute with the structure group action
and to project to the identical mapping on the base space. The set,H®wearries a
natural partial ordering defined by the relation of inclusion up to isomorphy and up to the
action ofG.

Proposition 2.1. Howe,(P) is isomorphigas a partially ordered seto OT(A¥, G¥+1).

Proof. See [13, Theorem 3.3]. a

We note that in the casgé = SUn, any Howe subbundle is holonomy-induced, see [13,
Theorem 6.2]. Hence, this condition is redundant here.

The following description of Howg P) has been derived in [13]. First, the Howe sub-
groups of Sl were determined. Let &) denote the set of pairs of sequences of strictly
positive integers

J:(kvm)z((k19"'7k}’)’(m17-~-’mr))’ r:].,...,}'l,
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obeying) :_; kim; = n. Let g denote the greatest common divisor of the members of
m and letm = (1, ..., m,) be defined byn; = gm; Vi. We shall always viewk as an

(r x 1)-matrix (row vector) andn as a(1 x r)-matrix (column vector). This turns out to
be their natural character. Any € K(n) defines a decomposition

n __ A ki m;
cr= o @Cm,
=

and an embedding

,
Mi (©) x -+ X Mg, (€) > Ma(©), (D1, D) 1> @ Di @ . @)
=
Here M (C) stands for the algebra of compléxx [)-matrices. IdentifyingCki @ C™i =
Chimi | (c1, .- ) ® W1, ... dy) > (c1de, ..., cxdi, ..., c1dm;, - .., Ckd;), the ten-
sor productD; ® 1,,, corresponds to then; x m;) block matrix
D 0 --- 0
0O D --- 0
0 0 ... D

We denote the image of the embedding (1) by(#) and its intersections with &JJand
SUn by UJ and SU, respectively. Note that Wis the image of the restriction of (1) to
Uk1 x --- x Uk,. By construction, M (C) is a unitalx-subalgebra of M(C).

Proposition 2.2. Up to conjugacythe Howe subgroups @Un are given bySUJ, J €
K(n).

Proof. See [13, Lemma 4.1]. a

In order to classify principal SW-bundles oveM, the homotopy classes of maps from
M to the classifying space BSUhave to be determined. Through building the Postnikov
tower of BSU/ up to the 5th stage the following was shown.

Proposition 2.3. Let M be a manifolddim M < 4and let Q Q' be principalSUJ-bundles
over M. Assume that for any characteristic clagsefined by an element & (BSUJ, Zg),
H2(BSUJ, Z), or H*(BSUJ, Z) there holdsx(Q) = «(Q’). Then Q andQ’ are isomor-
phic.

Proof. See [13, Corollary 5.5]. a

A generating set for the characteristic classes mentioned in the proposition can be con-
structed as follows. Consider the natural homomorphisms

Jjs :SUJ — UJ (embedding,
pr; - M, (C) — My, (C)  (projection onto théth facton,

prb{i :UJ — Uk; (projection onto theth facton.
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For any positive integér letyy; = 1+ yt(ﬁ) +-- -+ylf” denote the sum of generators of the

cohomology algebr&/* (BUI, Z). We assume that the generators are chosen in such a way
that for the canonical blockwise embeddijiag Ul — U(/ + 1) there hold$B ji)*yuu+1) =

yur Vi. (Recall that B; : BUl — BU( + 1) is the map between classifying spaces
associated tg;.) Then, in particular, the characteristic classes defined by the generators

yl(ﬁk) are thekth Chern classes. The cohomology elements

BjiN*Bpry vk, i=1....r
of H*(BSUJ, Z) define characteristic classes

ay;Bun(M, SUJ) — H*(M, Z), Q- (fQ)*((BjJ)*(Bprlf,i)*)/Uk,»), 2)
wherei = 1,...,r. Herefp : M — BSUJ is the classifying map of and BurnM, SUJ)

stands for the set of isomorphism classes of principalV ®undles overM. We denote

ay(Q) = (@s1(0Q), ..., ay,(Q)).
Next, for any positive integer, let j; : Z; — U1 denote the canonical embedding and
let p; denote the endomorphism— z' of U1. We define a homomorphism

.
AV us - U, D ]_[p,;,i o dety, o pry (D). ()
i=1

One can check that the diagram

yg —% Un
7&},} I | detun
U1 . U1 @

commutes. Moreover, we notice that the image oflSMderk? is the subgroup, (Z,) of
U1l. Thus,)»b’ induces a homomorphiswﬁ : SUJ — Z, by requiring the diagram

suJ —22 uJ
xi} ‘w
Z,——— Ul
Jg (5)

to commute. (In fact, one can show tha?t projects to an isomorphism of the group of
connected components of 3WntoZ.)

One can show that the Bockstein homomorphigm HY(BZ,, Z,) — H?*(BZg, 7),
induced by the short exact sequence-0Z — Z — Zg — 0, is an isomorphism, see the
proof of Lemma 5.9 in [13]. Thus, we can consider the cohomology element

1n 2
BB (B 17
of HY(BSUJ, Zg). It defines a characteristic class

£/ :BUNM, SUJ) — H*(M.Zg), Q> (f)"(BA5B; Bjp) ).  (6)
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By construction, the characteristic classgsands; are subjectto arelation. To formulate it,
let us introduce the following notation. Let r be positive integers. For any € M, . (N)
(set of(r’ x r)-matrices with non-negative integer entries), we define a map

r r’
Ex:[]HS®\.2) - [] H5"*"¢. D,
i=1 i'=1

A Ay Ay A
(alv'-'sa}’)H(alll\_/...\./arl',...,alrl\./...\_/ar'”r). (7)

Here powers are taken w.r.t. the cup productH§¥'\-, Z) denotes the subset&FV¢'(., Z)

of elements of the fornr = 1+ @@ + @ + ... Note thatH§"®"is a semigroup w.r.t.

the cup product. LeE(AZ”l:?(oe) denote the component of degreg @ the i’th member of

Ex(a).
Proposition 2.4. The characteristic classes;, &; are subject to the relation
EX((Q)) = Be(£/(Q)) VQ € Bun(M, SUJ). ®)

Recall thath is viewed as &1 x r)-matrix.

Proof. See [13, Theorem 5.13]. |

We introduce the notation
r
HY (. 2) = [Tl € HE®. Dl = 0 for j > ki}. 9)
i=1

Consider the following two equations in the variabdes HY) (M, Z), £ € HY(M, Z,):

EP (a) = By (&), (10)
Em(a) = c(P). (11)

Herec(P) denotes the total Chern classf

Proposition 2.5. If dim M < 4,the characteristic classes; andé; define a bijection from
Bun(M, SUJ) onto the set of solutions of E(LO). By restriction, they define a bijection
from the subset dBun(M, SUJ) of reductions of P onto the set of solutions of E{<))
and(11).

Proof. See [13, Theorems 5.14 and 5.17]. O

Note that the content of Eq. (11) in degree 2 is a consequence of Eq. (10).

Let K(P) denote the disjoint union of the solution sets of Eqgs. (10) and (11) over all
J € K(n). We write the elements of &) as triples(J; «, &), whereJ € K(n) and(«, &)
is a solution of the corresponding equations. According to Proposition 2.5, the( Bat K
classifies the Howe subbundles®fup to isomorphy.
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Finally, the action of the structure group 8@n Howe subbundles o was factored
out by passing to the s&t(P) that is obtained from KP) by identifying (J; «, &) with
(o J; 0w, &) for all permutationsr of 1, ..., r. Hereo J stands for

oJ = (ok,om). (12)

Theorem 2.6. The collection of characteristic cla§s¢a,, &s71J € K(n)}, defines by
passing to quotients bijection fromHowe, (P) ontoK (P).

Proof. See [13, Theorem 7.2]. a

In the sequel, it is convenient to work with the inverse of this bijection. To construct it, for
anyL € K(P), L = (J;a, &), let O, denote the isomorphism class of $idubbundles
of P defined by

ay(Qr) =a, (13)
£7(Qp) =¢&. (14)

Then the pre-image of the elementitP) represented by. is given by the conjugacy
class ofQ; under Su-action. The (isomorphy classes of) subbundbkgsmay be viewed
as some kind of standard representatives of the elements of iBye

To conclude this section, for later use, let us collect some formulae involving the function
E 4. For anyi’, one has

)
2 2
ED (@)= Anef®, (15)
i=1

r r
4 4 Api(Airi = 1) 2 2
E(A,)i/(a):ZAi’ial'()+Z i'i éz a,-()‘/“i()
i—1 i=1

2 2
+ Z Ai/,‘A,‘/jOli( ) o Ol; ), (16)

I<i<j<r
see [13, Lemma 5.11]. In particular, for any non-negative intéger
E? ) =1ED (@) Vi'. 17)

Taking into account that the cup product is commutative in even degree, one can also check
that for anyA € M, .(N) andA’ € M, ,+(N) there holds

EA/AIEA/OEA. (18)
3. Characterization of the partial ordering

In this section, we are going to determine the natural partial ordering of Haweon
the level of the classifying sét(P).
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LetL = (J;,8), L' = (J'; o, ') be elements of KP). Let [Q,] and [Q/ ] denote
the conjugacy classes @f;, and Q' , respectively, under the action of 8UThe natural
partial ordering on the set HoweP) is defined as follows:

[01] <[0Q1] < 3D € SUn suchthatQ; - D < Q. (19)

Here inclusion is understood up to isomorphy. We aim to express the relation (19) in terms
of L andL’.

Let D € SUn, such thath~1SUJD < SUJ’. Then there also hold®~1UJD c UJ’ and
D~IM;(C)D < M;/(C). We have an associated homomorphism

MM M;(C) - My (C),  Cw DICD,

and, derived from that, homomorphism% :UJ - uJs’ andh% : SUJ — SUJ'. Due
to My (C) and My, (C) being finite-dimensional unital’*-algebras, the embeddin@ is
characterized by a@r’ x r)-matrix A(D) € M, . (N) (non-negative integer entries), called
inclusion matrix The matrixA(D) can be constructed as follows: for4d i < r and

1 < i’ </, consider the homomorphism

WM prt

Mk,- C) > M;C)->Mpy©C = Mkl{/ (©), (20)
where the first map is canonical embedding taithdactor of M; (C). DefineA(D);/; to be
the number of fundamental irreps contained in the representatiop 6EMdefined by (20).
Lemma3.1l. LetJ, J' € K(n). Let D € SUn such thatd~1SUID € SUJ’. Then

A(D)k =K/, (21)

m = m'A(D). (22)
Converselylet A € M, .(N) be a solution o{21) and (22). Then there exist® € SUn
such thatD~1SUJD € SUJ’ and A(D) = A.
Proof. First, letD be given as proposed. Consider the representations

M (C) = M, (C) - M, (0), (23)

M
My, () — My (C) 2 M/(C) = M, (C). (24)

The numbers of fundamental irreps contained in (23) and (244),aaed2ff:1 m’, A(D);;,
respectively. Since (23) and (24) are isomorphic—a bijective intertwiner being giver-by
we obtain (22). Moreover, inserting this equation imd = m’-k’ yieldsm’-(k’—Ak) = 0.
By construction, the members of the sequekice Ak are non-negative. Since the members
of m are strictly positive, Eq. (21) follows.

Conversely, letA be a solution of (21) and (22). Consider the decompositions

C" =@e)_,Ch @ C™, (25)

C" = @,_,Clv @ C™ (26)
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defined byJ and.J’, respectively. Due to (22) and (21), (25) and (26) admit subdecompo-
sitions

C' = @]_1C" ® (@, C4 @ C™), 27)

" = @)l (B)_,CY e Ch ) @ T, (28)

respectively. There exist® € SUn transforming (28) into (27) by a suitable permutation
of the subspace8’ ® C4i ® C". One can check thad 1M (C) D leaves the decom-
position (26) invariant. It followsD M ;(C)D < M /(C), henceD~1SUID < SUJ'.
Moreover, from (27) and (28), one can read off thgiD) = A. a

We remark that for general inclusions offMC) @ --- @ M, (C) < Mk’l Oe---@
M, (C), inclusion matrices only have to obgy; 1 Ajiki < k., where the inclusion is
unital iff there holds equality for all'.

Let us denote the set of solutions of the system of equations (21) and (22)/by )
We note that if NJ, J) # @, then (22) implies thag’ dividesg. Hence, reductiopyy :
Ly — Z, modg’ is defined and is a ring homomorphism.

S
Again, letD € SUn, such thatD~1SUID € SUJ’. Let Q[LhD] = Q1 xsuy SUJ’ denote

the SW’-subbundle ofP associated t@; by virtue of the homomorphisnh% . SUJ —
SuJ.

S
Lemma 3.2. The characteristic classes Q‘[Lh”] are
(3]
oy (Q; ") = Eam)(a), (29)
(3]
§7(Q17) = gy (6), (30)

S
Proof. The classifying map oQ[LhD] is

f w3 = Bh?) o for- (31)
or
Hence, according to (2)
) [h%)] _ * N U =
aJ’,z’(QL )= (fQ["IS)]) ((B.]j/) (BP"J/,I-/) VUklf,)
L
= (fo,)" (BRD)*((Bj;)*(BPIY 1) vuw,)
= (f,)*(Bj1)* (BHp) (BPIy: ;) vui, (32)
In order to caIcuIateeBhg)*(Bprb’/’i/)*yuy,, consider the homomorphisms
priy okl : My (C) — My, (©), (33)

pr‘L]J/’i/ O h% . UJ d Uk;/. (34)



G. Rudolph et al./ Journal of Geometry and Physics 42 (2002) 106—-138 115

Since the image of (33) is a unitaisubalgebra of ¢t (C), the image of (34) is a Howe

subgroup of W@/,. Hence, the latter is conjugate to/i” for someJ @ € K(k/,). One can

check that/ @) is obtained from the pair of sequenags, ..., k), (Aj1, . . ., Aprr)) by
deleting all pairs of entrie;, A;;; for which A;;; = 0. On the other hand, I is the
image of the homomorphism

d [Ty pr H -1 A(D) ADii 3
<p,/:UJ—>HU = ”]—[ H [ Uk | >Uk. (35)
i=1 i=1 i=1\ j=1

Hered; denotes diagonal embedding into thiold product, where fof = 0 this product

is assumed to reduce {6}, and:;s is a standard blockwise embedding. Having conjugate
images, the homomorphisms (34) and (35) are conjugate themselves [7], i.e., there exists
an inner automorphisng; of Uk, such that the following diagram commutes:

uJ
pir pry o o hP

Uk) ————— UK,
' Ur ' (36)

Since W;, is connected, B; is null-homotopic. Thus, on the level of cohomology
(Bhp) (BRI, i) yuy, = (Bein) Y- (37)
From the decomposition (35), one derives
Bei) yur, = (BRI ) i) APt — - — (BpIg,)*pue ) 2P, (38)

see the proof of Lemma 5.12 in [13] for details. We remark that (38) is an analog of the
Whitney sum formula. Using (7), from (37) and (38) we deduce

(Bhp)* BRIy )*Yur, = Ea).i’(BPIS 1) Wty - (BPIS) v, ). (39)
Inserting (39) into (32) and using (2) and (13), we find
[hIS)] _ * N . U \* U \x
oy i (Qp )= (fo ) Bj) Eaw).ir(BPry ) vk, - - (BPry )" vuk,)

= (fo,)*Eap).ir(Bjr)* BPIY ) yusy. - .. B Bpry ) yur,)
= Ex),ir(aj(QL)) = Eamp,ir ().

This proves (29). Now consider (30), using (6) and (31), we compute
B 6 (QVh) = ﬂg«fQ[,,g])*((BA?)*ﬂ;%BJ’go*y&?)
L
=(f [,,Is)])*<8x§,)*<sjg VY

= (fo,)* (BhS)*(BS)*(Bjy) v?. (40)
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Let! be such thag = Ig’. The following relation will be proved afterwards:
Jg oA 0hY = projeoA3. (41)
Inserting (41) into (40) yields

B (61 (O) = (f0,)" BAS B Bp)* y2. (42)
It is easily seen thatp)). : 71(Ul) — 71(U1) is multiplication byl. Therefore,
B WG =In3- (43)

Then (42) becomes

Ber (610 = 1£0,)" B1S) B 12 = 1 for) (BA A LB VD)
= 1B,(6/(01)) = 1B (&), (44)

where for the last two equalities, we have used (6) and (14), respectively. As a direct
consequence of the definition of the Bockstein homomorphism, one has

1Be = Byoggy- (45)
Thus, (44) yields
S

Bor €OV = Byogy (). (46)

Consider the following portion of the long exact sequence of coefficient homomorphisms
which is induced by the short exact sequence & — Z — Zy — 0, see [5, Chapter IV
and Section 5]

By
.- — HY(BSUJ,Z) — HY(BSUJ, Zy)-> H*(BSUJ, Z) — - --

SinceH1(BSUJ, Z) = 0, see [13, Corollary 5.8f, is injective here. Hence (46) implies
(30). It remains to prove the relation (41). According to (3) and (5), for ary8JJ

g 025 0h3(BY=2Y 0 jy o h3(B) =AY, o b 0 js(B)

r

= 1‘[ piy, o detyy, o pry, ;o hp o ji(B). (47)
i'=1

Using (36) to replace #r e hU and taking into account that an inner automorphism does
not change the determlnant (47) yields

I

Jgr 025 0h(B) = ]_[ Pi, o detyy, o gy 0 js (B). (48)
=1

By construction ofp;/, see (35), forang € UJ,

,
delyy, 0 ¢ (C) = l_[ PAW),, © detyg, o pry,; (C).
i=1
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Thus, (48) becomes

Jg 0 A5 o h} (B)_HHP;;U o pa)y,; © detuy, o pry; o ji(B)

=1li=1
,
u
= HP(ZC/ i, AD) © detyy, o pry; o js(B). (49)
i=1 T

Due to (22),g’2/ 11, A(D) i = Z{lem’,-/A(D),-/i = m; = gm;, hence

/

> L ADY =i, i=1,....7. (50)
i'=1
Consequently, (49) implies

)
Jg 023 03 (B) = [ pim, o detuy, o pry; o js(B)
i=1

p
=D (H pin, o detyy, o pry; o jJ(B))
i=1
_ U . _ . S
=piokjo jj(B)=pio jsorj(B),
where the last two equalities are due to (3) and (5), respectively. This proves (41) and,
therefore, concludes the proof of the lemma. O

Lemma3.3. Let D € SUn, such thatb—1SUID < SUJ'. ThenQ; - D is a reduction of
S
QLhD] to the structure groug> ~1SUJD.

S
Proof. Defineamap : Q.-D — QLhD], q-D +— [(g, 1]. Thismap is obviously smooth.
To check equivariance, I€t € SUJ, then

¢((g-D)-D7ICD)=¢((g - C)- D) =[(g - C, D] = [(g, h3(C))]
=[(g, D] -h3(C) =[(¢g, 1] - D~1CD.

This proves the lemma. a

Theorem 3.4. LetL = (J; @, &), L' = (J'; &/, ¢') be elements dK(P). Then[Q] <
[Q/]ifand only if

(a) g’ divides g and there holds = ogq (),
(b) there existsA € M, (N) such that

Ak =K/, (51)
m=m'A, (52)
Exla) =0, (53)
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Proof. Tobeginwith,assume];] < [Q/]. Thenthere exist® € SUn suchthaD-D C
Q. SinceQ; - D has structure group~1SUID, D~1SUJID < SUJ’. As a consequence,
the homomorphismls) and the inclusion matrixA(D) exist. Due to Lemma 3.1A(D) €
N(J, J'), hence it obeys (51) and (52). The latter equation implies, in particulargthat
dividesg. Moreover, by constructionR;, can be reduced t@; - D. According to Lemma

S S
3.3, so can the SjU-bundIeQ[LhD]. SinceQ, and Q[LhD] have the same structure group, it

~

S
follows O = Q[Z’D]. Then Lemma 3.2 yields

/ h
o = a(0r) = s (V7)) = Exp)(@).
Thus,A(D) satisfies (53). By an analogous argument, we finally §ingt ogqy (£).
Conversely, assume that assertions (a) and (b) hold. Then, due to Lemma 3.1, there exists

S
D € SUn such thatD~1SUJD € SUJ’ andA(D) = A. Consider the Sw/—bundIeQ[Lh”]

associated t@; . Due to Lemma 3.2 and (53)
(3] /
ay(Q; ) =Ex(e) =a =ayp(Qp).

S S
Analogously, we obtai@,/(Q[LhD]) = &;,(Qr/). Hence,Q; and Q[LhD] are isomorphic.
Then Lemma 3.3 implie®; - D € Qy/, up to isomorphy (which is sufficient). It follows
(0] =[Qv] O

Let L, L’ € K(P). If condition (a) of Theorem 3.4 holds, we defindIN L’) to be the

set of solutions of the system of equations (51)—(53). If this condition does not hold, we
define NL, L") = . In order to be able to argue entirely on the leveKatP), we define

a partial ordering oK (P) as the image of the natural partial ordering of HQ(/) under

the bijection defined by the collection of characteristic clagses,, J € K(n). According

to Theorem 3.4, the partial ordering so defined can be characterized as follows.

Corollary 3.5. Letk,«’ € R(P), then the following assertions are equivalent

@) « <«
(b) there exist representativés L’ of i, «’, respectively, such thid(L, L") is non-empty
(c) for any two representativels, L’ of «, «’, respectivelyN(L, L') is non-empty

Proof.

(a)= (c): LetL, L’ be given. By assumptiond;] < [Q/], then Theorem 3.4 implies
that N(L, L’) is non-empty.

(c)= (b): Obvious.

(b)= (a): LetL, L' be the representatives provided by assertion (b). Sinde K) is
non-empty, assertions (a) and (b) of Theorem 3.4 hold. It follows that the sub-
bundlesQ; andQ;  obey [01] < [Q'], hencex < k'. a

Example. Let P = M x SU4. Consider elements = (J;a,&), L’ = (J';d/, &) of
K(P), whereJ = ((1,1), (2,2)) andJ’ = ((2, 2), (1, 1)). We remark that the subgroup
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SUJ C SU4 has connected components

z12 0 z1s 0
e U1y, eUl;,

hence is isomorphic to the direct proddetx U1. The subgroup SW can be parameterized
as follows:

zZA 0
SUJ' = 1
0 z7°B

Thus, it is isomorphic to the direct product ISU2 x SU2.
Inordertofind outwhethed ;] < [Q;/], we are going to determine@, L’). Condition
(a) of Theorem 3.4 is obviously satisfied. Thus, we can proceed as follows: first, we solve
Egs. (51) and (52), i.e., we derivg Nl J'). Then, for allA € N(J, J’), we computeE 4 ()
and compare the result withl. Egs. (51) and (52) read

Al A 1 _ 2 ’ (1 1) A1 A _(2 2)
Az1 Ao 1 2 Ay A

We extract the equations

zeUl,A,BeSUZ}.

A1+ A1 =2, A1+ A =2, A1+ A =2, A2+ Axpp = 2.

The solutions are

AY = . A= . A= . (54)
11 0 2 2 0

Fora = (a1, a2), they yield

Epa(a) = (a1 — ap, a1, — a2), Epp (o) = (a1 — a1, ap, — o),
Epc(a) = (a2 — a2, a1, — ai1).

Thus,NL, L) # ¢,i.e.,[01] <[Qr],ifand onlyifa’ coincides with one of the elements
Eaa(), E b (@), OF E ac () listed above.

4. Bratteli diagrams

Any A € M,/ .(N) can be visualized by a diagram consisting of a series of upper vertices,
labeled byi = 1, ..., r, and a series of lower vertices, labelediby= 1, ..., r’. For each
combination of andi’, the corresponding vertices are connected pyedges. For example,
the matricesA?, A? and A€ in (54) give rise to the following diagrams:
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i1 2 i1 2 i1 2
[ ] [ ] [ ] [ ] [ ] [ ]
A% Ab. AC:
L ] L ] [ ] [ ] L J [ ]
i1 2 i1 2 ¢ 01 2

The diagrams associated in this way to the elements(df W), whereJ, J' € K(n) are
special cases of the so-call&ilatteli diagrams[4]. The latter have, in general, several
stages picturing the subsequent inclusion matrices associated to an ascending sequence of
finite-dimensional von Neumann algebvas C A, C A3z C ---. For this reason, we refer
to the diagram associated tb € N(J, J') as the Bratteli diagram ofi. We remark that
due to Eq. (51)A cannot have a zero row. Due to (52), it cannot have a zero column either.
Accordingly, each vertex of the Bratteli diagramafis cut by at least one edge.

LetL = (J;a,&) andL’ = (J'; a’¢’) be elements of KP). In terms of the Bratteli
diagram of the variablet, Egs. (51)—(53) can be rewritten as follows:

k;,=2r: Yook =17, (55)

i=1 edgesfromitoi’

o
mi=Z Z my,, i=1...r, (56)

i’=1edgesfrom toi’

al{,zv ~ o, i/=1,...,r/. (57)

i=ledgesfronitoi’

The main use of Bratteli diagrams is to simplify calculations as, for instance, solving the
equations determining M, L). Furthermore, some of the arguments in the sequel are

easier to formulate on the level of these diagrams than on the level of the corresponding
matrices.

5. Direct successors

In this section, we are going to derive a characterization of direct successor relations in

K(f) and to formulate operations that generate the direct successors of any given element
of K(P).

5.1. The level of an inclusion matrix

LetJ, J' € K(n). For anyA € N(J, J'), we define the level oft to be the integer

0A) =2 Z Z Api — (r+71). (58)

i=1i'=1
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Using the quantities

Gy =Y An]| -1 i=1....rn (59)
i'=1

6 (A) = (Z A,,) —1, i'=1,...,7, (60)
i=1

we can write
LAY =) 6 (A + 6 (). (61)
i=1 i'=1

Due to (51) and (52), each row and each colummafontain at least one non-zero entry.
It follows thate; (A), €;, (4) > 0. Hence, due to (61},(A) > 0.

As for the interpretatiory,(A) measures, in a sense, how mukideviates from/ (up to
permutations). On the level of the Bratteli diagranqf¢(A) is twice the number of edges
minus the number of vertices, Wherdf;i“s(A) and¢; (A) count the edges at the vertices
andi’, respectively, minus the obligatory one edge per vertex.

For later use, we note the following formulae, which follow immediately from (61)

/

WA =2 tf (A +r—r'=2) (A +71 —r. (62)
i=1 i'=1

5.2. Lemmata about the level

Lemmab5.1. LetL,L’,L” € K(P)andletA e N(L, L"), A’ ¢ N(L', L"). ThenA’A €
N(L, L") and

LA A) > £(A) + £(A). (63)
Moreover £(A") = 0 or £(A) = 0 imply equality in(63).

Proof. LetL = (J;, &), L' = (J';a/, &Y andL” = (J”; a”, §"). By the assumption that
N(L, L")y and N(L’, L") be non-emptyg’ dividesg andg” dividesg’, henceg” dividesg.
Also by this assumptio§, = ogg (§) ands” = 0,47 (§"), hencegy (§) = 0g/g700gg (§) =
0g'¢" (") = &”. Moreover, one can check thatA obeys Egs. (51)—(53), where for the last
one, (18) has to be used.

To prove (63), using (58)—(60), we compute

ZVZZ;’F(A/)Z;(A) = 22 ((rz Ay | =1 ((i Ai’i) - )
i'=1 i’=1 i=1

i"=1

"

" ooy -
= 2 (Z Z Z A;//i/Ai/i - Z ZAi’i - Z Z A;//i/ + 1"/

i"=1i'=1i=1 i'=1i=1 i"=1i'=1
=LA A) — £(A) — £(A). (64)
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Since the |.h.s. of (64) is non-negative, this yields (63). Moreové¢4f = 0 oré(A’) = 0,
then due to (61);, (A) =0 orejf(A’) = 0, respectively, for ali’. Hence, the |.h.s. of (64)
vanishes, so that equality holds in (63). O

Lemmab.2. LetL, L’ € K(P)andletl = 0or 1.1f N(L, L") contains an element of level
| then all its elements have level |

Proof. LetL = (J;a,&),L' = (J'; o/, &) and letA € N(L, L’). Due to (51) and (59)
DokitF ="k D A | -1 =Dk =D k. (65)
i=1 i=1 i'=1 i'=1 i=1

Sincek; > 0 and¢;"(A) > 0 for all i, (65) implies
6 (A)=0 Vie Y K-> k=0 (66)

i'=1 i=1

By a similar argument, we find

6 (A) Yi=0& mi—Y m=0. (67)
=1

i=1

Now assume that(A) = [, wherel = 0 or 1. Then at most one of the integéﬁs(A) or
£;;(A) can be non-zero. Thus, (66) or (67) holds. In either case, the assertion holds for any
A" e N(L, L). Then (62) implie€(A”) = £(A) = 1. O

Remarks.

(1) The proof of Lemma 5.2 shows that the lemma still holds if one replacés N) by
N(J, J), foranyJ, J' € K(n).

(2) Ingeneral, the level functiohmay not be constant onthe setdN L’). For example, let
P be the trivial SU8-bundle ovedl and letL. = (J; o, &), L' = (J'; &/, &') be given by
J=(12),4,2),a=1¢&=0and)’ = ((4,2), (1,2),a =1, = 0.Obviously,
(a, ) € K(P)y and(a’, &) € K(P);. One can check that (L, L’) contains the
following two inclusion matrices:

A 4 0 A 0 2
~\o 1) “\2 0/
One hag(A) = 6 andé¢(A’) = 4.

Lemmab5.3. LetL, L’ € K(P). The following assertions are equivalent

() L andL’ are equivalent
(b) N(L, L") contains an element of level
(c) N(L, L") is non-empty and all of its elements have Idel
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Proof. Due to Lemma 5.2, (b (c). Hence, it suffices to prove (&} (b). Let L =
(J;a,8), L' = (J'; o, &). First, assume that there existe N(L, L’) suchthat(A) = 0.
Thenﬁj(A) = Oforalli and¢;, for alli’. That means, each row and each column contains
exactly one non-zero entry and this entry has value 1. It followsdhatsquare, i.es’ = r,

and that there exists a permutatiorof 1, ..., r such that

Ai’i :80(i’)iv l'/,i = 1, .o, T (68)
As an immediate consequence
Ak = ok, mA=o"1m, Ex(e) =oa. (69)

SinceA € N(L, L), (69) impliesJ’ = oJ, o' = oa, andé’ = ggq(§). In particular,
m’ = om, henceg = ¢’. It follows &’ = &, thus,L andL’ are equivalent.

Conversely, assume that = £ and that there exist a permutatienof 1, ..., r such
thatJ’ = oJ anda’ = oa. Since, in particularm’ = om, g’ andg coincide. Thus,
trivially, ¢’ dividesg and¢’ = oqg(£). Hence, if we find a solutiom of Egs. (51)—(53)
thenA € N(L, L'). Dueto (69), such a solution is given by the matrix (68). By construction,
it has level 0. O

5.3. Splitting and merging

LetL = (J; «, &) € K(P). Inthis section, we are going to formulate operations that cre-
ate new elements of ) out of L. These operations will be used to prove a decomposition
lemma in Section 5.4 and, later on, to generate direct successors.

5.3.1. Splitting
Choose 1< ig < r such thatm;, # 1. Choose a decompositiom, = m;, 1 + m;, 2
with strictly positive integers;, 1, m;, 2. Define sequences of length+ 1)

kO = (klv R kio—lv kio7 kios ki0+11 L] k}’)a (70)
m° = (my, ..., Mijy—1, Mig,1, Mig,2, Mig+1s - - -, My). (71)
a’ = (Ol]_, <o Og—1, Oy, Ujg, Kig+1, - - - O[r). (72)

Since the greatest common divisgrof m® dividesg, we can furthermore define
£° = 0gg (9). (73)

DenoteJ° = (k°, m°) andL® = (J°; a®, £°).

We claim thatL° € K(P). It is easily seen than® - k° = n anda € HY) (M, 7).
Consequently, it suffices to check that and&° obey Eqgs. (10) and (11). First, consider
(10). Let the integer be such thag = Ig°. Using (45) and (17) as well as taking into
account that (10) holds far and&, we compute

Beo (6°) = Bye 0 0gg (§) = 1B () = IED (@) = E2 (a).
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Expanding the r.h.s. according to (15) yields

m mi m
/30(50)21_10‘(2)+”.+lﬂa'(2)+'~-+l—ra£2)
’ 8 ! g o g
mi . "
Z_OO‘;Z) 4+t _’Ooal_(oz) + —:C{l(,z)
8 g 2
m m; m: m
= —10((2) R to,la.(z) + ’_0’20(,(2) R _ra(Z) _ Emo(ao),
go 1 go 0 go i palo

where the penultimate equality is due to the fact gtadivides bothw;, 1 andm;, >. Now
consider (11). Using commutativity of the cup product in even degree, one can check that
Eme(@®) = Em(a). Since (11) holds fow, it holds fora®. This provesL® € K(P). We

say thatL° arises fromL by a splitting of thegth member.

5.3.2. Merging
Choose 1< i1 < ip < r such thain;, = m;,. Define sequences of length— 1)
K® = (k1s .. s iy 10 kiy 4 Kigo ki 2s - s Kigs oo s ki), (74)
M® = (M1, ..., Mij—1, Mig, Migt1s oo Mgy o .y Ny, (75)
0 = (001, - ooy Oig—1, Qg = Oligy Qg Ly - ey Uigy e vy Of), (76)

where () indicates that the entry is omitted, as well as
§°=¢. (77)

DenoteJ° = (k°, m°) andL® = (J°; a®, £°).
Let us showL® € K(P). As in the case of splitting, one can immediately verify that
m°.-k® =n, a®° € HY) (M, Z), andEme («°) = Em(c). It follows thata® obeys Eq. (11).
Due tog® = g, a similar calculation showEBp. (a°) = Eg(a). Since alsgee (6°) =
B (£), we obtaing,e (§°) = E;.ﬁg (a°). Thus,L® € K(P).

We say that.° arises fromL by merging the th and theth member.

Remark. It may happen that for certain elements aff) no splittings or no mergings can
be applied. Amongst these elements are, for example, thosenwith - - - = m, = 1 (no
splitting) and those having pairwise distingt (no merging).

Lemmab.4. Letl, L° € K(P). L° can be obtained from L by a splitting of thggh member
if and only ifN(L, L°) contains an element with Bratteli diagram
¥ io—1 10 1+1 r
[} . ° . ° .. °
[ ] L] ° L] .. [ ]

1 ip—1 1 t0+1 10+2 T+1 (78)
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L° can be obtained from L by merging theh and thei,th member if and only iN(L, L°)
contains an element with Bratteli diagram

1 11—1 i1 11+1 12—1 iz 12+1

. .

.

1 1—1 i1 11+1 12—1 i2 (79)

Proof. Assumel = (J; «, &), L° = (J°; «°, £°). Since the proofs for the cases of splitting
and merging are completely analogous, we only give the first one. First, assunie that
arises fromL by a splitting of theipth member. Then, by constructiog, dividesg and

£° = g (§). Hence the matrix given by the Bratteli diagram (78) belongs ¢b,N.°)

iff it satisfies Egs. (51)—(53). By the help of Egs. (55)—(57), this can be easily checked on
diagram level. Conversely, assume th&LNL°) contains an element with Bratteli diagram
(78). Then, in particular, condition (a) of Theorem 3.4 holds, gé diVideSg and&® =

ogg (§). An inspection of (55)—(57) shows thb;t = ki 1 = ki, m + m?

io+ io+1 = Mg,
anda. = al o+l = oy, whereasko = ki, m{ = m;, of = o for 1<i < ipand
kig =ki,mi 4 =mi a4 =a for io < i < r.Thus,L° is obtained fromL by a
splitting of thezoth member according to the decompositiop = m; o Fmp g a

5.4. The decomposition lemma

Lemma5.5. Let L, L’ € K(P) and letA € N(L,L’). If £(A) # 0 then there exist
L° e K(P)andA° € N(L, L°), A € N(L°, L’) such thatA = A°’ A° and£(A°) = 1.

Proof To begin with, assume that there exigsuch thaﬁg(A) > 0. Chooseé, such that

Ay # 0. We have the following estimate:

r’ r/
/ / +
mig — mjy = > ml(Aig — Sir) = > (Avig — Siry) = 6} (A) > 0.
i'=1 i'=1

This shows thati;, = (m;, — m )+ m i is a decomposition into strictly positive integers.
0

We defineL® to be the element of (<P) obtained fromL by the corresponding splitting
operation. Furthermore, we defiae to be the((r + 1) x r)-matrix

1, 0

0 ]lr—-io

(80)
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andA°’ to be the(r’ x (r + 1))-matrix

Ap 0 Ay |0 Avien o0 Ay
Ay, |0

A= Apq - A= 1]1| Ay in -+ Ay,
Ai’0+l 10 0

Ay o0 Apgy |0 Ay o0 Ay

(81)

We notice thatA° has Bratteli diagram (78). Hence, due to Lemma 2%, N(L, L°).
From the diagram, we read off th&tA°) = 1. Moreover, by means of a direct computation
using (80) and (81), one can check thtit A° = A. Thus, it remains to prove that”’ e
N(L°, L"). This amounts to the following items:

(a) ¢’ dividesg®: We recall from (71) that

/ /
me° = (m, ..., mjy—1, mjy — My My, Mg, - - ,my). (82)

By assumptiong’ dividesg, hence all then;. By definition, it also dividemgé.
(b) 0gog (€°) = £': According to (73) 0,0y (§°) = 0gog’ © Ogg (€) = 0gg(€) = £'. Here
the last equality holds by assumption.
(c) A°k° = k’: Using thatA® € N(L, L°) andA € N(L, L), we computeA®’k® =
A Ak = Ak =K.
(d) m’A°" = m°: This has to be checked by a direct computation using (81) and (82).
(e) Exo(a®) = a’: Using the same arguments as for (c), as well as (18), we obtain
Epor(@°) = Epor 0 Eqo(@) = Eporpe(a) = Ea(a) =o',
This provesA® € N(L°, L').
Now assume theﬁf(A) = O foralli. Then in each column af there exists exactly one

non-zero entry, and this entry has value 1. On the other hand, &irlge# 0, there exists
ig such that;, (4) > 0. This means, the row labeled Kyhas at least two entries of value
0

1. Therefore, we find two columns, labeledhy< i2> such that

1, i'=ip, k=12,
Az’tk = . (83)
0 otherwise k=12
Thenm;, = Z’/ 1 Aiygm, = m; it k = 1,2, hencem;, = m;,. Thus, we can define

L° to be the element of KP) obtamed by merging thegth and thei,th member ofL.
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Moreover, we definet° to be the((r — 1) x r)-matrix

A® =

0
1 0 0
0
0 110 --0 0 ---0
0
0 Lip—iy—1 0
0
0
0 0 lr—ig
0
andA°’ to be the(r’ x (r — 1))-matrix
All Al i1-1 0 Al i1+l A‘l ir1 A-l i+l Alr
0
Ay Ay i [ 1] Ai in Aiy iy | Aty ign Ay -
0
Ar’] : Ar' i1 0 Ar’ i1+ Ar’ i1 Ar’ i+l Ar'r

127

A° now having Bratteli diagram (79)° € N(L, L°) by Lemma 5.4. Analogous to the
first case, one can check thatd) = 1, A°’A° = A, andA°®’ € N(L°, L’). This proves

the lemma.

5.5. Characterization of direct successors

Theorem 5.6. Letx, «” € K(P). The following assertions are equivalent

(a) «’ is a direct successor af.
(b) There existrepresentatives L ahtofx andx’, respectively, such th&t(L, L’) contains

an element of level.

O

(c) For any representatives, L’ of x and«’, respectivelyN(L, L’) is non-empty and its
elements have levél
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Pr oof.

(@)= (c):

(€)= (b):
(b)=(a):
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Let L and L’ be representatives af and«’, respectively. Since < «’ due
to Corollary 3.5, there existd € N(L, L'). Sincex # «’ due to Lemma 5.3,
£(A) # 0. Then Lemma 5.5 implies that there exist € K(P) and A° €
N(L, L°), A" € N(L°, L") such thatA = A°A° and£(A°) = 1. Letk®
denote the equivalence classlgf. We havec < «° < «’. According to Lemma
5.3,k # «°. Itfollows thatx® = «’. Hence, again due to Lemma 5¢8A°’) = 0.
Then the sharpened version of (63) impliggl) = £(A°) = 1.

Obvious.

LetL, L' € K(P) be given as assumed. Let € K(P) such thak < «x° < «’.
For any representative® of «°, there exisi® € N(L, L°) andA°’ € N(L°, L').
Due to Lemma 5.14°" A° € N(L, L'). Since, by assumption, this set contains
an element of level 1, Lemma 5.2 yieléigA°’ A°) = 1. Then (63) requires that
either£(A°) = 0 or £(A°") = 0. According to Lemma 5.3, in the first case,
k = k°, whereas in the second casé, = «’. This shows that’ is a direct
successor of. O

The Bratteli diagram of an inclusion matrix of level Let L, L’ € K(P) and letA €
N(L, L’). Assume that(A) = 1. Then either there exisig such thatéjg(A) = 1and

Zl.*(A) = Oforalli # ip and¢; (A) = O for alli’, or there existg; such thalzlf,(A) =1
0

and¢;, (A) = 0 foralli’ # i and¢; (A) = 0 for alli. Accordingly, the Bratteli diagram
of A is given by

-

e

11—-1 1 io—1 i d0+1 i2—-1 12

AR

11—-1 43 1141 ip to+1 i2—1 i i2+41 r+1
(84)
forsome 1<iy <ip <r +1,0rby
1 11 — 1 11 i1+ 1 10 0+ 1 i2—1 1 i2+1 r
L] L] L] L] e L] L] . L] L] L] ... L]

-1 12 io—1 20 to+1 i2—-1 12 r—1

(85)
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for some 1< i1 < ip < r, respectively. In particular, in the first casé= r + 1 and in the
second case, = r — 1.

5.6. Generation of direct successors

Theorem 5.7. Letk € K(P) and letL be a representative of Then the direct successors
of k are obtained by applying all possible splittings and mergings to L and passing to
equivalence classes

Proof. As an immediate consequence of Lemma 5.4 and Theorem 5.6, any element of
K (P) generated in the way proposed is a direct successer Gonversely, lek’ be a

direct successor of. Choose a representativé of «’. Due to Theorem 5.6, L, L')
contains an element of level 1. As noted above, the Bratteli diagram of such an ele-
ment is of the form (84) or (85). By a permutation of the lower vertices we can turn
this diagram into (78) or (79), respectively. This corresponds to the passagé.fram
another representativie® of «’. It is immediately seen that the matrix given by the dia-
gram with permuted lower vertices belongs to/NL°). Then Lemma 5.4 implies that

L° can be obtained froni. by a splitting or a merging, respectively. This proves the
theorem. |

5.7. Example

Let P be a principal SU4-bundle. Lét € K(P), L = (J; &, &), whereJ = (k,m) =
((4,2), (2, 2)). Thena has componentg; = 1 + al.(z), i =1, 2. (One may wish to recall
from the example of Section 3 that SUhas isomorphism typg, x U1.) We are going to
determine the direct successors of the equivalence class of

Let us begin with splitting operations. Fay = 1, the only possible splitting is given
by the decompositiom; = 2 = 1+ 1. ltyields L, = (J;; o), &), whereJ; =
((1,1,1),1,1,2), a; = (a1, a1, 2), and&;, = 0. The passage frorh to L, can be
represented conveniently in a Bratteli diagram whose vertices are labeled by the respective
quantitiesk;, m; ande; (rather than by the mere numher

a) a2 13
L 1,2 1,2

[ ] [ ]

L] ° [ ]
LS 1,1 1,1 1,2

) ) a2 3
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Forip = 2, a similar splitting operation creatds), given by the labeled Bratteli dia-
gram

aj az §
L 1,2 1,2
. .
. . .
LS 1.2 1,1 1,1
a) as a2 & =0

As for merging operations, the only choice f@riz isi; = 1, i = 2. This yieldsL¢:

ay a2 '3
L 1,2 1,2
. .
o
L2 2.2
a) — a2 £ =¢

Next, we have to pass to equivalence classes. Genericglly,,, andL; generate their own
classes. However, while? can never be equivalent Ig, or Ly, the latter are equivalent iff
a1 = a2. In order to see for which bundlgsthis can happen, consider Eqgs. (10) and (11).
The first one requireef) = aéz) to be a torsion element. Then, dueo&ﬁ) = aé“) =0,

the second one implies(P) = 0. Thus,L; andL; can be (occasionally) equivalent only
if P is trivial.

6. Direct predecessors

In this section, we formulate operations to generate the direct predecessors of any given
element ofK (P). Direct predecessors are, for our purposes, more interesting than direct
successors for at least two reasons. First, they allow one to reconstruct thePseto-
gether with its partial ordering from the unique maximal element (which, in terms of Howe
subbundles, is given by itself). Second, on the level of the stratification of the gauge orbit
space, predecessors correspond to strata of higher symmetry.
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In the preceding section, we have been able to create all direct successors of a given
element ofK (P) from one and the same representative. This was achieved by using the
freedom in the choice of the representatives of the direct successors. Since here we wish
to proceed likewise, we have to carry this freedom from the level of successors to that of
predecessors. For this reason, the inverted operations are not just splitting and merging read
backwards. They rather take the following form. lleg K(P), L = (J; a, &).

6.1. Inverse splitting
Choose 1< i1 < i» < r such thak;, = k;, anda;; = «;,. Define sequences of length
(r—1)
K® = (ka, ..., kiy—1, kiy s kig+1, -+ ki, oo ki),
mo = (mla L] ml‘lfl’ mil + miza mi1+la L] n/,l.l'\za L] mr)7
aO = (a19 ey ail—la ailv ail-‘rlv DR} &Ea D) ar)-

We note thag divides the greatest common divisgr of m°, so thato,-, is well defined.
Choose:° € HY(M, Z4-) such that = 040, (£°) and

By (£%) = E2 (a°). (86)

DenoteJ° = (k°, m°) andL® = (J°; «°, £°). We check thaL® € K(P): by construction,
me°-k° = nanda® € HY) (M, Z). Due to (86)n° andz® obey Eq. (10). Using;, = a,,
one can check thatm- (¢°) = Em(x). Hence, sincex obeys Eq. (11), so does’. This
provesL® € K(P).

We say that.° arises fromL by an inverse splitting of thath and the>th member.

6.2. Inverse merging

Choose 1< ig < r such that;, # 1. Choose a decompositidg, = k;,,1 + kij,2 With
strictly positive integerk;, 1, ki, 2. Choose cohomology elemewts 1, iy 2 € H§*'(M, Z)

such thabzl.((i{) =0forj > kiy;, I =1,2,and
(Xio,l ~ Oll'072 = Oll'o. (87)

Define sequences of length + 1)

ko = (klv MR ] kio—lv kio,11 ki0,27 klo+17 ] k")v

mo = (mla ] ml‘ofla mi07 mioa mi0+la M mr)a

aO = (a19 RN aio—ls aio,lv aio,Zs aio-l—l» ] ar)v
as well as

§°=¢.

DenoteJ°® = (k°, m°) andL°® = (J°; «°, £°). To see thatL.° € K(P), we checkm® .
k® = nanda® € HY (M, 7). Using (87), one can verify thakme(a«®) = Em(c).
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Consequently® obeys Eq. (11). A similar calculation, using, in additigfi,= g, shows
that Ee (@°) = Em(@). Since alsgBg- (5°) = B, (§), «® and&° obey Eq. (10).
We say that.° arises fromL by an inverse merging of thgth member.

Remark. Like for the operations of splitting and merging, for some of the elements of
K(P), inverse splitting or inverse merging may not be applicable. In particular, it may
happen that there does not exist a solutof Eq. (86).

Lemma6.1. LetL, L° € K(P). L° arises from L by an inverse splitting of thgh and
theisth member if and only iN(L, L°) contains an element with Bratteli diagram

1 11—1 il 11+l 12-—1 iz

L . h

.

1 1-1 ix 11+1 12—-1 i2 12+1 T+l (88)

L° arises from L by an inverse merging of tijgh member if and only iN(L, L°) contains
an element with Bratteli diagram

1 10—1 io 1o+1 1o+2

° .

°

1 o—l io lo+1 ro1 (89)

Proof. The proof is completely analogous to that of Lemma 5.4 and shall be omitted.

Theorem6.2. Letk € K(P) and letL be arepresentativeof Then the direct predecessors
of x are obtained by applying all possible inverse splittings and inverse mergings to L and
passing to equivalence classes

Proof. The proof is completely analogous to that of Theorem 5.7. The only difference is
that here we are allowed to pass to another representativemittiecessqi.e., to permute
theuppervertices in the diagrams (84) and (85), thus arriving at (88) and (89). O

Example. As in Section 5.7, letP be a principal SU4-bundle and lé&t € K(P), L =

(J; a, &), whereJ = ((1, 1), (2, 2)). We are going to determine the direct predecessors of
the equivalence class @f. Inverse splittings can be applied onlyif = «2. In this case,

for any solutiors® € H1(M, Z4) of the system of equations

£° mod 2= &, (90)
Ba(€®) = a'?, (91)
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we obtain an element® = (J°; «°, £°), whereJ° = ((1), (4) anda® = a1 = ap. The
passage fronk to L° can be summarized in the labeled Bratteli diagram

ay £°
L° 1,4
o
. .
L 1,2 1,2
ay (31 §

that has to be read upwards. Each generates its own equivalence class. Duéite=
ko = 1, inverse mergings cannot be applieditoThus, in the case;1 = a2, the direct
predecessors of the equivalence class afe labeled by the solution of Egs. (90) and (91),
whereas in the casg # oy direct predecessors do not exist. Recall from Section 5.7 that
the first case can only occur K is trivial.

As another example, consider an elemghof K(P), L' = (J'; ¢/, &), whereJ’ =
((2), (2)). Inverse mergings can be applied and yield eleméfitas follows:

aao 0120 é-[O - 6’
L' 1,2 1,2
] L)
[ ]
L 2,2
o {l
Herea/° = 1+ («/°)@, i = 1, 2 such that}° — a° = «’. When passing to equivalence

classes, elements’ with o’® = (}°, @5°) anda’® = (a3°, @1°) have to be identified.
SinceL’ does not allow inverse splittings, there are no more direct predecessors.

7. Example: gauge orbit types for SU2

The gauge orbit types for SU2, i.e., the B&tP) for a principal SU2-bundle® over M,
was calculated in [13] by solving Egs. (10) and (11) for/alHere, we are going to recover
this result using a different technique that will also yield the partial ordering of orbit types.
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A partially ordered set can be reconstructed either: (a) from its minimal elements by
successively determining direct successors, or (b) from its maximal elements by succes-
sively determining direct predecessors. In the cadé(df), there exists a unique maximal
element, namely the class corresponding to the buRdiself. Minimal elements are, in
general, not unique. In fact, their number can be infinite. Thus, the preferred algorithm
is (b).

The unique representative of the maximal element@ Kis Lmax = (Jmax; ®max» Emax)»
where Jmax = ((2), (1)), amax = ¢(P), andémax = 0. Inverse mergings yield elements

L°:
af ad =0
L° 1,1 1,1
[ ] [ ]
L]
Lmax 2,1
¢(P) Emax =0

wherea? = 1+ (a,.o)(z) suchthatr] — a3 = ¢(P). Sorting by degree yields the equations
@)@ + (@5)@ =0 and(@)@ — (@5)@ = c2(P). We parameterize

(O‘i)(z) =a?, (0(3)(2) = —a?,
wherea® € H2(M, Z) has to obey
—a@ — a@ =cy(P). (92)

The passage to equivalence classes leads to an identification of solffbasd —a@.
We note that the Howe subgroup labeled by= ((1, 1), (1, 1)) is the toral subgroup
U1 of SU2 and that the parametef® is just the first Chern class of the corresponding
reduction of P. By virtue of this transliteration, Eq. (92) coincides with the result given
in [9].

Next, consider the direct predecessors of the classes generatéd loyerse mergings
cannot be applied. Inverse splittings can be applied provideg o3, i.e.,a® = —a®@.
Then for any solutio°° € HY(M, Z5) of the equation

Ba(£°°) = a®@, (93)
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we obtain an elemert°°:

0? EOO
Le° 1,2
L]
[ ] L]
Le 1,1 1.1
aj a$ =0

Each of these elements generates its own equivalence class.

Note that the Howe subgroup labeled by= ((1), (2)) is the centeZ, of SU2 and that
£°°is the natural characteristic class for princigatbundles oveM, see [15, Section 13].

Now let us draw Hasse diagrams &f P) for specific space—time manifold¥. In
the following, vertices stand for the elements fP) and edges indicate the relation
‘left vertex < right vertex’. When viewing the elements Kf P) as Howe subbundles, the
vertex on the r.h.s. represents the class correspondiAgtself, the vertices in the middle
and on the L.h.s. represent reductiong’ab the Howe subgroups U1 ati}, respectively.
When viewing the elements &f(P) as orbit types, or strata of the gauge orbit space, the
vertex on the r.h.s. represents the generic stratum, whereas the vertices in the middle and on
the I.h.s. represent Ul-strata and SU2-strata. Here the names U1l-stratum and SU2-stratum
mean that the stratum consists of (orbits of) connections whose stabilizers are isomorphic
to U1 or SU2, respectively.

M = S* SinceH%(M,Z) = 0, Eq. (92) can be solved iff,(P) = 0, i.e., iff P is
trivial. The solution ise® = 0. Then Eq. (93) is trivially satisfied b§°° = 0. Due to
HY(M,Z,) = 0, there are no more solutions. Thus, in the cag®) = 0, the Hasse
diagram ofK (P) is

If c2(P) # 0, on the other hand (P) is trivial, meaning that it consists only of the class
corresponding t@ itself.

On the level of gauge orbit types, the result means that in the sector of vanishing topo-
logical charge the gauge orbit space decomposes into the generic stratum, an Ul-stratum,
and an SU2-stratum. If, on the other hand, a topological charge is present, only the generic
stratum survives.

M = S? x S% To perform the first step in the reconstruction procedure, detahd
VS<22) be generators af%(S2, Z) and H2(S?, Z), respectively. Due to the Kiinneth theorem,
H?(M, Z) is generated bys(zz) x 1gp and kp x ys(zz), whereasH*(M, Z) is generated by
VS(22> X Vs(zz)_ Here x denotes the cohomology cross-product. Writing

a? = ayQ x 1g + blg x y$ (94)
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with a, b € Z, Eg. (92) becomes
—2aby$ x y& = ca(P). (95)

If co(P) = 0, there are two series of solutions= 0 andb € Z as well asu € Z and

b =0.Due toHY(M, Z,) = 0, Eq. (93) tells us that out of the elements just obtained only
that labeled by: = b = 0 has a direct predecessor. Thus, in the caéB) = 0, the Hasse
diagram ofK (P) is

2.0)°" - .
L4 .

1.0 \
) .
0.0 TN
(0,1) "
. :
(0,2) -
° L

The vertices in the middle are labeled by the corresponding valués, 6§. Note that
passage to equivalence classes requires identification of sol@iphsand (—a, —b). If
c2(P) = 21;/3(5) X Vs(’f)’ [ # 0, then the solutions of (95) ate= ¢ andb = —I/q, where

g runs through the (positive and negative) divisors.&for none of these solutions, (93) is
solvable. Hence, here the Hasse diagram is

a,-1) e
(g, —1/q) @ -—-——— L
(,=1) e

where due to the identificatiot, b) ~ (—a, —b), g runs through the positive divisors of
lonly. If c2(P) = (21 + 1)y§) X Vs(?’ (95) has no solutions, so th&( P) is trivial.

Finally, the interpretation of the result in terms of strata of the gauge orbit space is similar
to that for space—time manifold = S* above.

M =L}, x St Recall thati(L3,.Z) = 0 andH2(L3 . Z) = Zy,. Let %) be a
generator ofHZ(L3p, Z) and let L ;, be the generator d°(St, Z). Due to the Kiinneth

theorem,H2(M, Z) is generated byl_(% x 1g1 7. We write
2
0@ =ay%) x1g 4. (96)

Due to ZWL(% =0, @ — @ = 0. Hence, Eq. (92) is solvable i (P) = 0, in which
case the solutions are givendy Z;,. Since when passing to equivalence classes, we have
to identify «® and—a@, i.e.,a and—a, the direct predecessors are labeled by elements
of Zp,.
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Next, consider the second step of the reconstruction procedure. ket (1)22’ andys(ll)Z

be generators deO(L3p, 7o), Hl(L3p, Z), andHY(SL, Z), respectively. Then, again due

to the Kuinneth theoremi (M, Z,) is generated byx,_(%z x laz and } 7, x Vs(ll)z'

Moreover, one can check that
1 2 1
Bon), x 1) = py%,  BalLz, x viy) =0. 97)
Decomposing©°® = aLyL(%Z x 1lq 7 +asl 7, x J/éll)z and using (96) and (97), (93)
becomes

pa = a.

Thus, only the elements labeled by= 0 anda = p have direct predecessors. These are
given by the valueg, = 0,as =0,1andq. =1,as=0, } respectively.
As aresult, in the cas&(P) = 0, the Hasse diagram &f(P) is

(0,0) o

(0.1)-/1.:&
(1,0)-\,,_1;7

(1,1) @

Here the vertices onthe |.h.s. are labeleddy, as), whereas those in the middle are labeled
by a. In the case(P) # 0, K(P) is trivial. Again, the interpretation in terms of strata of
the gauge orbit space goes along the lines of the kaseS* above.

To conclude, let us remark that, while for SU2 the picture is relatively simple, already
for SU3 the partial ordering becomes rather involved, and the Hasse diagrams representing
it are very complex.
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